FDO91
Internal Eyes Only

America Online, Inc Confidential

Please do not distribute, duplicate or forward this document

within the company or outside the company without our express approval.

Applications Development East, America Online, Dept 420

Renee Shomaker x 55034
Introduction

The AOL service is comprised of “forms.” Forms are the windows a user sees as he/she navigates our service – virtually all windows the user sees are forms. The Buddy List ™, sign on screen, and the toolbar are all examples of "forms.” Form developers use an AOL proprietary language - FDO91 - to create them.

Just like any programming language, FDO91 requires a development environment in which to create, edit, and debug. Development tools used include:

· form_edit and/or VPD (the compilers)

· the Database Viewer (to view records)

· the Master tool (to debug)

…all of which will be described later in this document.

FDO91 Developers create the front-end UI that the member will see – everything the FDO91 Developer creates in their forms is, in the member’s eyes, the AOL Client. Ninety-nine percent of the time, the member will never see the actual AOL Client Code – there are very few exceptions. Those few exceptions are:

· Web Preferences (Preferences (WWW)

· Most error messages

· Standard windows dialog boxes (such as when opening a file while in AOL)

The client toolbar, the menu bar, the Welcome screen, and the connectivity forms are all FDO91 forms and streams that the member interacts with. As FDO91 Developers, our first and foremost goal must always be an easy and intuitive member experience – if our forms are confusing and/or don’t work, it will create a bad experience for the member.

FDO91 is a collection of commands that allow you (the Form Developer) to define forms, and objects on the forms, that will be displayed to the user. These commands are called Atoms and are basically shortcuts to code sections already defined in the client.

Every atom belongs to a protocol, which in most cases belong to one particular client tool. Protocols are groups (or “families’) of atoms, according to what those atoms do within the client. For example, the atoms that work with the client database are in the Database protocol, and the atoms that control the flow and logic of the atom streams are in the Universal protocol. Atoms that handle the way actions are triggered and run are in the Action protocol, and atoms that handle the form and object attributes are in the Attribute Manager protocol.

The client code that handles all the atoms and protocols is built into tool files and .dll files. The tool files are put into the tool directory in the AOL install directory when the member installs the client. The .dll files are installed in the main AOL install directory. Together, these files interpret incoming and outgoing FDO91 commands.

Behind the scenes is where the FDO91 interacts with the client code. As mentioned above, the member will hardly ever see this – it’s our responsibility to make sure that interaction is smooth and seamless.

Fundamentals of the FDO91 programming language

FDO91 has similarities to other more widely used programming languages.

· The ability to add comments

· If you begin something, you must end it

· Return values

· Arguments / Parameters

· Looping (Do / While)

· If / Then / Else

· Variables

Those of you with experience in other programming languages should have some knowledge of the above items. Explanations of these, as they relate to FDO91, will come later in this document.

The Form Developer / Code Developer Relationship

New features are defined when a new release is being contemplated by Marketing. Client Development will then assign any new features to the code developers. If a form is needed for that new feature, the code developer will come find an FDO91 Developer and discuss with them what is needed.

An explanation of how the feature works, the expected behavior of the client form, and what the form is supposed to look like, are all important aspects of form development. The UI for the form is usually pre-determined by the Marketing UI Team. The form may need to write / read information to / from the database, it might need to just look pretty on the screen. Either way, clear and absolute understanding of the necessary parts of the feature will be your framework when you start building your form. Good communication with the code developer is a necessity – if you don’t understand something, ask!

If your forms work leads you to fix a bug on a form that is already defined, understanding of that feature and the expected behavior vs. current behavior is necessary. Locate the developer of the feature code and the forms developer who created the form, if necessary, to get this information.

One other thing to keep in mind – the forms you create are not always going to be worked on just by you. Other people will come behind you to fix bugs, localize the forms for other countries, or for other reasons. When you create, or edit, your forms, keep them as simple as possible. This will help keep confusion from other forms developers to a minimum. If you must create a complex stream or form, place comments in the complex sections to explain what you are doing. This will also help you – if you come back to a form after a year, you may not remember what you were doing in that form, and the comments will remind you.

Atom Streams

Streams are series of atoms, in a particular order, which will define your form.

The simplest atom stream is:

uni_start_stream

uni_end_stream

These 2 atoms start a stream, then end it. Nothing happens during it and nothing is defined within it, yet it is a complete atom stream.

You will use a myriad of different atoms, from an assortment of different protocols, to create a complete atom stream. The atoms will

· start and end the stream (uni – Universal protocol)

· create the form and objects on the form (man – Display Manager protocol)

· give them their attributes (i.e., font type and size, color, invisible vs non invisible, etc.) (mat – Attribute Manager protocol)

· create their actions (act – Action protocol).

Atom streams can

· be sent or invoked from the client or the host (uni, sm – Shorthand)

· extract data from any stream or form (de – Data Extraction protocol)

· extract and write data to and from the client database (idb – Database protocol)

· perform a myriad of other functions.

Atom streams can be forms with objects on them, or they can be stand-alone streams with no visual aspect.

A Form is an atom stream that has visual components – the atom stream has drawn a form with objects on it so that the member can interact with it. However, an atom stream can be created that has no visual components; these are created to perform certain needed actions. For example, the toolbar consists of quite a few atom streams that create forms: they draw the toolbar, the buttons on the top row, the buttons on the bottom row, the input fields for you to browse the web and search the web. These are streams with visual components. However, all these atom streams are called by one atom stream that is invoked when the client is launched, and this atom stream’s sole function is to invoke the toolbar and perform a few other functions related to launching the client. It has no visual components, and does not come up as a form, or window, on the screen. It performs its functions and is finished.

FDO91 is extremely flexible in the ways it can manipulate information – therefore it is very important to understand what the atoms and protocols do. This document is not all-inclusive; it is meant to give a broad definition of certain atoms and streams seen often in client forms, and to give a general idea of how to create or edit forms using FDO91 and VPD.

Keeping it simple

Keep your streams and forms as simple as you can, for your sanity and whoever comes after you to work on that form. Make comments in complex streams to make it easier later to change / fix the stream(s).

; (semicolon

uni_start_stream

;define the form

(comment

man_start_object <ind_group, “Form Title”>

man_end_object

man_update_display

uni_end_stream

The compiler (VPD or form_edit) ignores comments; they are for the form developer’s information only.

You may also use hfs_attr_object_comment <”your comment here”> in the pre-stream, in-stream or post-stream of any object.

Prestream, Instream and Poststream

When writing an atom stream, defining forms and the objects on the forms, there are certain areas within that stream to define the object’s attributes and perform other functions.

A pre-stream is the part of the stream directly before an object’s definition is started. For example, the developer might want the stream to check and see if that form is already onscreen somewhere (maybe the member minimized it and forgot about it), and if it is, bring that one to the front instead of rendering a second copy of the form. Since that check needs to occur before the definition of the form is started, it would go in the pre-stream of the form itself.

uni_start_stream

(starts the stream

… check for if this form is already onscreen
(this is the prestream
 man_start_object <ind_group, "Form">

(starts the object, in this case, the form itself

man_end_object

(end of the object

man_update_display

(update the display (redraw the screen)

uni_end_stream

(end of the stream

The in-stream of an object, or its definition, is where its attributes and actions are defined. This is after the object has been started, but before it’s ended.

uni_start_stream

(starts the stream

 man_start_object <ind_group, "Form">

(starts the object, in this case, the form itself

 mat_precise_width <550>

(the in-stream starts here

 mat_precise_height <320>

(
 mat_bool_precise <yes>

(
more in-stream
 mat_bool_resize_vertical <no>

(
 mat_bool_resize_horizontal <no>

(
 man_end_object

(end of the object

man_update_display

(update the display (redraw the screen)

uni_end_stream

(end of the stream

*Note: Notice the atoms giving the above form its attributes all start with “mat”. These atoms are all in the Attribute Manager protocol. There will be more information on this protocol later in this document.

The post-stream of an object is directly after that object is defined. The post-stream of a form is often the place to run actions that will affect the form that was just created. Since you cannot do anything to an object until it is fully rendered, oftentimes a form developer will place actions in the form’s post-stream to affect the value of the objects on the form after it is finished rendering. An example would be the Mail Preferences form – after that form is fully rendered, the post-stream is written to look in the client database for the preferences the member has previously saved. The stream takes those values and places them on the objects on the mail preferences form. So if the member had previously saved their preference to “Use white mail headers”, the stream will see that value saved to the client database and check that box on the form.

uni_start_stream

(starts the stream

man_start_object <ind_group, "Form">

(starts the object, in this case, the form itself

man_end_object

(end of the object

… check values in database and apply to
(this is the post-stream of the form

objects on the form

man_update_display

(update the display (redraw the screen)

uni_end_stream

(end of the stream

· Pre-stream is for atoms to come before an object is started
In-stream is for while the object is being defined
Post-stream is after that object is defined
· All objects have a pre-, in-, and post-stream, however, defining a stream in each of them is not required.

All attributes and actions are (90% of the time) defined in the in-stream of the object.
Client Forms

All client forms are stored locally in the client’s database (i.e. main.idx on Windows). Most of these forms are available both online and offline. A distinction should be made here between client-based FDO91 forms and host-based FDO91 forms.

Client based FDO91 forms are stored in the desktop client's database. These are the forms that are shipped with the client on CD-ROMs.

Host-based forms are not viewable when a member’s client is offline. Therefore, all client forms that are available in the offline state have to be stored in the main.idx (database) which is installed in the America Online installation on the member’s hard drive. This enables the client to retrieve forms and display them to the user while in an offline state.

Examples of Client Based Forms:

Mail Forms

Toolbar

Menu bar

Sign-on & Sign-Off screens

Connectivity Forms

IM’s and Buddy List™ - Post 7.0, Divlet team

Examples of Host Based Forms:

Welcome Screen

News

Chat

AOL Today

Channels

IM’s and Buddy List™ , pre-7.0

Client-based forms are permanent and are not easily changed. The forms, database records, and artwork are all built into the main.idx at build time, which is then wrapped into our installer program with the rest of the client code and shipped on a CD-ROM. Once a CD-ROM is shipped, it’s out there to members with no way to recall it. The only way to change something in a client form in a GM Client is to send a replacement for that form via a TOD or UDO. TODs and UDOs undergo the same strict QA and beta testing that new client code does -- sometimes more, as the delivery mechanism has to be tested as well. This is one of the main reasons we need to make sure our forms work as expected and have no bugs – once that form is shipped, it’s shipped. Host based forms offer flexibility not seen on client forms because they are centrally located on a host server (not the client computer), and changes made to the production version are immediately seen by members going to those forms online.

The Client Database

The database stores database records, online and offline client forms, all offline artwork, and some online artwork. Any new artwork a client encounters while browsing the service (except for art on web sites) is written to the database to enable shorter download times the next time that area is entered by the member. Client forms are stored here to enable them to be viewed offline as well as online.

The database records in the client database store everything from the member’s preferences to the access numbers they dial to get online. These are set and reset by the member whenever they interact with the connectivity forms and preference forms, whenever they sign on as a new member and set their screen names, etc. There is a lot of writing to and pulling information from the database going on behind the scenes when a member interacts with our client.

In order to retrieve data from a database record (or write data to it), the developer must use the Database protocol (IDB). There will be more on this later in the database section.

Form Size

Attention must be paid to the overall size of a form. There are generally no limits or restrictions on size except for one – the form must fit on a 640x480 monitor without causing scroll bars to appear.

Basic Client Forms Attributes

· Closeable – By default all client forms should be closeable unless otherwise required. When a form is marked non-closeable, it disables the form’s close control in the upper right of the form. If the need arises to create a non-closeable form, this would be placed in the in-stream (definition) of the form:

mat_bool_non_closeable <yes>

The value is set at “no” by default – you do not need to add this atom to the definition of the form unless you need to change the value to “yes”.

· Modal – By default all client forms should NOT be modal unless otherwise required. Modal forms have a title bar, but no close, maximize, or minimize controls in the upper right corner, and no system menu or AOL Icon in the upper left corner. They also have focus until the form is closed (i.e., the member can’t click on any other forms on their screen until that modal form is gone). To make a form modal, you would use:

mat_bool_modal <yes>

in the in-stream (definition) of the form. By default, this is already set to “no”, and you do not need to add this atom to the definition of your form unless you need to change the value to “yes.” Please keep in mind that if you make a form non-closeable or modal you must have a working “close” button on the form in order for the member to close it. This is especially important on modal forms – if there isn’t a close button then the member can’t get rid of the form, and can’t click anywhere else either!

· Resizable – By default all client forms should be resizable unless otherwise required To set the resizable attributes, these atoms would be used in the in-stream (definition) of the form:

mat_bool_resize_vertical <yes>

mat_bool_resize_horizontal <yes>

If a form is defined using precise placement, resizability defaults to “no”. On a non-precise form with no precise placement, the default is “yes”. There will be more on precise placement later in this document.

· Do not close me first – By default all client forms should NOT be marked as "Do not close me first" unless otherwise required. There is a 23-open-forms limit on the Windows client, and if this attribute is set, that form will not be automatically closed when the limit is encountered. To set this attribute, you would use this atom in the in-stream (definition) of the form:

mat_bool_auto_closeable <no>

*Note: Notice, again, that the atoms defining the above attributes all start with “mat”. These atoms are all in the Attribute Manager protocol. There will be more information on this protocol later in this document.

The Master Tool

To debug any problems you may have with your forms, the master tool with the atomic debugger will show you the stream you're getting when your form is up and running the actions on it. Very handy and can save you tons of time - use it! :) For instructions on how to use this tool, please see Appendix A.

Resources and Tools

· FDO91 Manual - http://www.office.aol.com/aolclientdev/fdo
Contains information on all atoms, grouped by protocol. Gives definitions, required arguments, return values, and example atom streams.

· Master tool – use this tool to view incoming and outgoing atom streams, to “snoop” a form to see it’s attributes, to update your client database with a new or changed form from the host. To see how to use this tool, please see Appendix A.

· DBView – Use this tool to load a client database (main.idx) and view the contents. Database records, art, and atom streams are all viewable with this tool.

· Hexedit – Use this 3rd party tool to convert ASCII to hex and back, if needed.

· gid.exe – This is a small program made by our developers that converts any value to its Decimal, Globalid, and hex equivalents.

· VPD and form_edit - FDO91 editors and compilers (VPD is Visual (drag and drop), form_edit is a Stratus process).

· atoms.h file - List of supported atoms on a per client basis.

· globalid.h file - List of database records in use and a reasonable explanation of what they are used for, on a per client basis.

*Note: The atoms.h and globalid.h files are part of the core client code. They are also specific to each client version – as more code gets added to the client, so the list of available atoms and number of globalid’s used in the client grows. If you need a copy of these files, you can request one from a client developer who has access to the client code tree.

· Listservs - Atom, FDO91-Team, and Techproducer. The Atom listserv is a discussion forum used for creation of new atoms. FDO91-Team is for all issues pertaining to FDO91. Techproducer is for the Technical Producer community – if you can’t figure out how to do something in an atom stream and you’ve exhausted all other avenues of information, ask your questions there. To request subscription to any of these listservs, send email to listserv@listserv.sup.aol.com, with these words in the body of the email:

SUBSCRIBE listserv name - i.e. SUBSCRIBE TECHPRODUCER

· Keyword: Formtest. This keyword can show you a form on test or production, and enables you to view and test them.

· Keyword: Techdoc. This launches your external browser. On this web site there are many different areas of documentation – just about anything you’d ever want to learn about on the AOL Service is documented here.

· Keyword: Styleguide. All newly created forms must comply with the AOL Style Guide, which is defined on this site.

· Keyword: PSO. There are 2 options for this keyword – On Campus or Off Campus. If you click “Off Campus”, this will take you to their online area where you can find the VPD tool for whatever AOL client you are using, and other information. Please note most of the documentation found here is a bit out of date. Clicking “On Campus” will take you to their web site (it launches an external browser) where you can request VPD rights and request access to any test system. There will be more on the test systems later in this document.

· Screen name PSO Assist. Send an IM or an email to ask questions about getting access to test systems, if you are having a problem logging into a test system, or if VPD seems to be acting strange. They cannot help with specific stream writing but they can assist with the tools (i.e., VPD) used.

· FDO91 web based introduction: http://dev.office.aol.com/aolclientdev/fdo/Misc/FormGuideline.htm This page is very informative – it tells about creation of new forms, how to add objects, etc.

Testing

This cannot be stressed enough - Testing your bug fixes and/or your new content areas or forms, is a necessity and is NOT something to treat lightly. Make sure everything about that form works and does what it’s supposed to, that it works on all platforms it is meant to be seen on (windows, mac, appliance).. if it has any interaction with the toolbar/menubar you need to make sure it doesn’t break Kids Only/Teens Only/switch screennames, etc. Pass the forms on to a co-worker and let him/her try to break them – that is one of the best testing methods around (.

When dealing with forms that go directly onto production, this is especially important to avoid messy problems for members. One too many backspaces in a stream killed the Kids Only welcome screen....but because the stream was not tested it wasn't noticed until it was already on production and already being seen by members. Bad. Very bad. No one is going to be able to test every scenario (that is QA's job), however – a lot of heartburn can be avoided easily by the developer testing his or her own work first.

The Compilers

There are 2 compilers for FDO91 – one is a Stratus process called form_edit, and is the oldest FDO91 compiler. The other one is called Visual Publisher Designer, or VPD, and is a plug-in program to the AOL Client. This compiler has a visual front end with drag-and-drop capabilities and is much easier for some to use. The drag-and-drop capability creates the FDO91 atom stream behind the scenes as the developer adds and moves objects and creates actions.

Please note that form_edit and VPD do NOT talk to each other – if a form was created in one, it must be edited with the same compiler. It is not possible to load a form created with one compiler into the other. Forms are invoked on the client the same way whether they were created with one or the other, as the two databases copy between them when forms are installed to test or production.

Special permission must be granted to use either compiler – Stratus Ops gives permission for form_edit, and the PSO gives permission for VPD. Usually you will log into VPD on your master, or business, screen name, in order to work on your forms.

Non-precise vs. Precise Placement

When first creating a form, the developer must decide, by looking at all of the components of the form and what the layout will be, if the form needs to be a precisely placed form, a non-precise form, or a mixture of the two. The following will explain the differences between them.

Precise vs. Non-Precise is defined at the group and form level. Other defined objects take on the precise or non-precise mode of the group they are in.

Precise Placement - the object uses x and y coordinates within it's parent object. “x” is across, and “y” is down. Precise placement uses “pixels” as its measurement – so if you give an object the coordinates of x 10, y 10, the object’s upper left corner will be 10 pixels from the left of the form, 10 pixels down:

mat_precise_x <10>

mat_precise_y <10>

[image: image1.jpg]
A Form Developer would use Precise Placement if they need to define an exact x and y coordinate for where each object will be located.

If a form or objects are defined as precisely placed, they must also be given a precise height and width. These 2 measurements are also in pixels. This is different from non-precise objects – objects in non-precise groups are either sized to their content, sized to their content with x amount of characters for “padding”, or given a width in characters and a height in lines. Pixels only come into play when precise placement is involved.

Precise object

mat_precise_width <200>
(width defined as 200 pixels

mat_precise_height <25>
(height defined as 25 pixels

As opposed to

Non-precise object

mat_width <30>

(width defined as 30 characters

mat_height <1>

(height defined as 1 line

Precisely placed forms and other objects are not resizable. In addition, if the form is defined as precise, every object on that form must be precise. There is no mixing allowed as there is with a form defined as non-precise.

Groups - Groups are invisible object holders. On a non-precise form, objects are usually placed in groups so that they can be aligned without having to provide each and every object with an x and y coordinate. The objects in non-precise group are aligned according to their relationship to each other within that group – the object tree (the order the objects are drawn in) comes into play when aligning these groups. Non-precise groups are resizable unless that attribute is set to <no>.

A precise form can have precise groups defined within it; as stated above, all the object “group” is, is an invisible object holder. What matters is how it is defined.

Non-precise – A non-precise group or form is defined with 3 arguments: The direction you want the objects contained in the group to go in (horizontal or vertical), the alignment along the horizontal axis of that group (i.e., do you want the objects to be aligned on the left side of the group, the right side, in the center, etc), and the alignment along the vertical axis of that group (along the bottom of the group, the top, centered between top and bottom, etc).

Options for the horizontal axis are: left, right, even, center, and full

Options for the vertical axis are: top, bottom, even, center, and full

A group defined as: Vertical, left, bottom (mat_orientation <vlb>) will make objects within that group stack one atop the other (vertical), aligned at the left of the group (left), as close to the bottom as they can get (bottom). A group defined as Horizontal, center, top, (mat_orientation <hct>) will center all objects in a horizontal row within that group, and put them at the top of the group. The size of the group will depend on the size of the objects contained in it. The group will automatically size itself as you add or delete objects from it.

Groups are nestable - see example:

The following is a Horizontal group that contains 2 vertical groups; each vertical group contains 2 buttons:

[image: image2.jpg]

Horizontal Group, mat_orientation <hct>

<

Vertical Group, mat_orientation <vlb>

< Horizontal group

button 1

<

button 2 w/larger title

<

Vertical Group, mat_orientation <vlb>

button 3

button 4

^^1st vertical group^^ ^^ 2nd ^^

When the form is drawn, the group sizes according to the size of the objects contained in it - therefore, the first vertical group will be wider than the second, due to the title of the second button taking up more horizontal space. The buttons will be left aligned. The form will draw both vertical groups, then place them in a horizontal group.

The first vertical group is wider due to the second button being wider.

[image: image3.png]If you change the alignment on that first vertical group to right instead of left (mat_orientation <vrb>, it aligns the buttons in that group on the right:

VPD - If you know you want your form to be non-precise at the beginning, make sure you uncheck the "Use precise placement" box in the form properties at the beginning. (VPD may make you add at least one object first so the form won't be too small to edit after it switches to non-precise mode). Otherwise every group you add when the form is in precise placement mode will be defined as the same, and you’ll need to go into the properties of every group afterward and turn it off.

Form_edit – Your form starts out in non-precise mode. If you want to set it to precise placement, you must toggle that option “on” in the definition of every object, and go into Advanced Options to give that object its x and y coordinates and its height and width in pixels. You can also place these attributes within the in-stream of that object.

Forms can be defined as non-precise and have some precise objects on them. Some things to remember about this type of scenario would be:

· If a form itself is defined as Precise, everything on that form will be precise.

· If a form is defined as non-precise, individual objects may be defined within a precise group on the form, depending on how the form needs to be drawn. For instance, if the form needs to have certain objects in certain spots on the form, yet the form still needs to be resizable, the form can be defined as non-precise, and those objects that need to be in certain places can be defined in a precise group and given their x and y coordinates. The x and y coordinates will be based within that precise group, not the form, since the form is not precise. So if an object is given an x coordinate of 10, and a y coordinate of 10, it will be 10 pixels from the left side of the group, and 10 pixels down from the top of the group. The group itself will have coordinates of x0 and y0 – and will be rendered according to where in the stream (the object tree) it is defined. If a non-precise group is defined before the precise group, the non-precise group will be drawn first and the precise group and it’s objects next, yet the precise group will still have the coordinates of x0 and y0. The objects defined within the precise group will have coordinates based within that precise group. The same goes for any other precise group defined later on that form.

One reason the developer might want to mix the 2 is if one or more of the groups on the form needs to have a different background color than the form does. For some reason, the colors on the groups do not fill in correctly unless the groups that have the different background color are defined as precisely placed.

Most developers use either one or the other and don’t mix the 2 unless it becomes necessary.

form_edit and VPD Differences

Some differences between the 2 compilers need to be noted here:

form_edit defaults in non-precise mode – VPD defaults to precise placement.

"atom$" is not used in VPD. This is used in form_edit only – in the beginning of all atoms, atom$ must be typed first to tell the compiler that that line is an atom.

VPD requires brackets <> around ALL arguments, and quotes "" around text items (in addition to the brackets)

Atoms you see in VPD streams that begin with hfs are VPD-only atoms and are there for VPD’s reference only. They are used to designate the beginnings of in-streams, pre-streams (etc), comments, and provide communication within the VPD tool.

There is a slight difference in the format of some of the arguments each will accept - such as, for certain var (Variable protocol) atoms:
var_number_save <A>

in VPD is the same as
atom$var_number_save 00x

in form_edit

When placing an action on a button or other trigger, VPD will automatically put in the atom act_replace_select_action at the start of your action. You will need to put this in yourself in form_edit (atom$act_replace_select_action).
Locking forms in VPD is done by default – if you have saved a form in VPD, it automatically locks it in your name, and you must unlock it to allow someone else to work on it. Form_edit requires the specific locking of forms (which we do, to disallow unauthorized access and accidents!)

Naming Convention

In a command, the first section defines which protocol the atom belongs to.

In form_edit:

atom$man_start_object <ind_group>

In VPD:

man_start_object <ind_group>

'man' is the Display Manager protocol, and man_start_object is defined in the Manager tool. When the client interprets this atom, the code section defined for “man_start_object” in the Manager tool is run.

This atom takes an argument, i.e. <ind_group>.

Arguments

Atoms can be straight commands or they can take one or more arguments, depending on how the atom is defined. Refer to the FDO91 manual to get the specifics of a particular atom.

When working with arguments, there are a few main types:

Object type – Form, button, view

Raw - Raw data

Bool - yes/no <1/0>

String - ASCII string

Hex - value in hex (hex can be a string, a dword, or a value)

GID - Globalid of a form, piece of art, permanent object or database record

RID - Relative ID of a form/stream object

man_start_object can take 1 (required) or 2 (2nd is optional) arguments, but one has to be the object type to start. The second (optional) argument can be a title for that object.

man_start_object <object type, "Title">

man_start_object <ind_group, “Preferences”>

Other atoms, such as man_close_update, do not require an argument. This atom closes the object that context is currently set to, updates the display, and is done.

In this case, we gave man_start_object an argument of <ind_group> (Independent group (form)). See below for a list of object types.

Objects

· ind_group Independent group – Form

· org_group Organizational group – Invisible Group to contain other objects (please see above section discussing grouping)

· dms_list Dynamic, multi-select list - List box where more than one item is selectable

· dss_list Dynamic, single-select list - Listbox, standard or editable popup

· sms_list Static, multi-select list – Group for Checkboxes

· sss_list Static, single-select list – Group for Radio buttons

· trigger Actionable object - Button – Depending on where they are defined, triggers can be regular buttons, listbox items (defined within a listbox), menu items (defined within a menu), checkboxes (defined within a checkbox group, above), or radio buttons (defined within a radio button group, also above).

· ornament Non-Actionable object - Decorative/static, art, text, or menu divider

· view
 Text or art

· edit_view Editable View - Text input field

· range Graphic representation of a value

· select_range Selectable Range - User interface for entering numeric data, spin gadget

· tool_group Toolbar - Toolbars and toolbar buttons within forms and frame windows

· font_combo
 Font Combo – listbox containing all available fonts

· tab_group Tab group – Tab controls for a group of tabbed objects

· tab_page Tab page – Tab page, frame or form within a tab group

· treectrl

Tree Control – (see 7.0 address book)

· treectrl_folder
Tree Control – Folder (see 7.0 address book)

· treectrl_item
Tree Control – Item within a folder (see 7.0 address book)

Quick Protocol Overview – main protocols

More detailed information on these protocols and their atoms is later in this document; this is just to get familiar with the names and give a general idea of what the different protocols handle. Third party protocols are not included.

Protocol
 ID Number
 Designation

Example

prot$uni 0

 uni

uni_start_stream

Universal - Controlling flow and logic within atom streams

prot$display 1

 man

man_start_object

Display Manager - Handles form displays, defining of objects

prot$action 2

 act

act_do_action

Associating actions with FDO91 objects

prot$extract 3

 de

de_start_extraction

Data Extraction – extracting data from input fields

prot$buffer 4

 buf

buf_start_buffer

Handling data packets from client to host, host to client, or interclient

prot$database 5

 idb

idb_start_obj

Maintaining the online database (main.idx) – used to store and retrieve information

prot$xfer 7

 xfer

xfer_start_download

File Transfer - Handling file transfer

prot$file 8

 fm

fm_start

File Manager - Handling file management

prot$list 9

 lm

lm_table_encrypt_table

List Manager - Manages lists (ex ... mailbox)

prot$code 10

 cm

cm_tool_id

Code and Tool management – allows for code and form replacement or updating (TOD’s and UDO’s), and client tool version verification.

prot$chat 11

 chat

chat_room_open

Handles chat functionality

prot$var 12
 var

var_string_set

Saving data to and manipulating data contained within variables

prot$async 13

 async

async_alert

Miscellaneous FDO91 functions

prot$shorthand 14

 sm

sm_send_f1

Atoms defined in this protocol can be used in place of common lengthy atom streams

prot$if 15

 if

if_offline_then

Handles conditional operations (if/then/else)

prot$mat 16

 mat

mat_bool_hidden

Attribute Manager - Specifies form and object attributes

prot$mip 17

 mip

mip_action_command

Message Interchange - Message data transport (example: email)

prot$mmi 20

 mmi

mmi_play

Multimedia Interface - Handling and playing multimedia files

prot$imgxfer 21

 imgxfer

imgxfer_set_context

Image Transfer - Handles image display

prot$image 22

 image

image_invert

Image Manager - Handles hotspots and image display

prot$chart 23

 chart

chart_type

Building charts with numeric data

prot$morg 24

 morg

morg_view_path

Multimedia Organizer - Maintaining personal filing cabinets

prot$rich 25

 rich

rich_manage

Rendering text with HTML tags

prot$exapi 26

 exapi

exapi_list_clear

External API - Handling external third-party applications

prot$dod 27

 dod

dod_start

Progressive Rendering - Rendering forms/art progressively

prot$app 40

 app

app_command

Currently used only in the Macintosh and Gamera clients.

prot$mt 42

 mt

mt_break

Master Tool - Handles client tools and allows for debugging (not available for general form creation)

prot$www 48

 www

www_browse

World Wide Web - Handling web browser forms

prot$gallery 56

 gallery

gallery_view_selected

Manage thumbnail images and arranges them in gallery views

prot$dice 57

 dice

dice_connect

Device Independent Connectivity - Initiate and manage all client connectivity

prot$spell 61

 spell

spell_rules_dlg

Spell preferences

prot$sage 72

 sage

sage_set_text

K2 and forward Context help

prot$buddy 73

 buddy

buddy_action_command

K2 and forward buddy list protocol

prot$comit 74

 comit

comit_begin

K2 and forward COOL tool components

prot$htmlview 75

 htmlview

htmlview_notify_action

K2 and forward new HTML

Restricted Atoms and Atoms for Experts

Some classes of atoms require significant experience before using. These atoms include:

 FM Filer Atoms

 VAR, IF, and other conditional atoms

 IDB Database Atoms

 BUF Buffer Atoms

 DICE Atoms

In addition, the following classes of atoms are restricted. Only those with special access and permission (given only by Client Engineering management) may deal with the following atoms:

 CM Code Manager atoms

 MT Master Tool Atoms

 EXAPI Atoms

The Object Tree

The object tree is the order in which a form’s objects are defined and determines the basic form structure. The order that objects on a form are rendered depends on the object tree – what is defined first is drawn first. The Window object is always first, then the first defined object, then the next, and so on. If a group is defined under the Window object, the group and every object within that group is rendered, in order, before going on to the next object defined under the Window. Keep this in mind when writing complicated streams – objects which have not yet been rendered cannot be actioned upon or have their attributes changed.

The order in which objects are defined also determines the form’s tabbing order. When you press the tab button, the cursor will move to the next tabbable object, as defined by the object tree. This includes text views, buttons, rich text views, etc. So if the objective is to be able to tab to all the text fields in order on the form, then be able to tab to a “Save” or “Cancel” button, make sure the objects are defined consecutively within the object tree.

Context

Context is very important when dealing with forms and streams. The client can only look in one place onscreen at a time, so you, the form developer, need to tell it where it needs to look. We do this by setting "context" on the object we want the client to look at.

man_set_context_globalid <globalid>

man_set_context_relative <relative id>

Globalid means either a form number that is currently onscreen, a database record (in such case you would use idb_set_context <globalid>), or one of the permanent objects in the client such as the root, the toolbar, the menu bar, the online cluster, etc. When you set context to a globalid, the client will look at that object and wait for your next command. You can close it (in the case of the aforementioned permanent objects this is definitely NOT recommended and the client will tell you so, should you try), run a different stream to affect that globalid, or do a man_set_context_relative <relative id> to make the client look at a particular object defined within the globalid it's now looking at. Relative ID's (unique identifiers within a stream or form) are defined at stream/form creation. Any time you might need to do something to an object you should assign it a relative id - otherwise, in a later stream, you have no way of telling the client to look at that particular object.

mat_relative_tag <number>

This atom assigns a relative ID to an object. It is placed in the definition of the object itself. The numbers must be unique to the globalid they reside on. For example, do not have 2 objects (say the Send Now and Send Later buttons) on the mail form with relative id 10. You can, however, have the Compose Mail form and the Reply Mail form both have an object (input field where you write your text) with relative id 10.

uni_start_stream

(starts the stream

man_set_context_globalid <32-30>
(sets context to the welcome screen form

mat_bool_invisible <yes>
(sets the attribute "invisible" to “yes”

man_update_display
(redraws the screen, changes now visible

man_end_context
(-ends context on 32-30 VERY IMPORTANT
uni_end_stream
(ends the stream

Always end context when you are finished with an object! Basically, if you play with the toy, put it back when you're done, so the next person who comes along has a clean play area.

uni_start_stream

(starts the stream

man_set_context_globalid <32-30>
(sets context to the welcome screen

man_set_context_relative <20286592>
(sets context to the You've Got Mail button

mat_bool_invisible <yes>

(sets the object to "invisible"

man_update_display

(redraws the screen, changes now visible

man_end_context

(ends context on 20286592

man_end_context

(ends context on 32-30

uni_end_stream

(ends the stream

Relative ID's do not need to be as long as the one above, they can start at 1 and go up from there.

Context acts as a chain – each link is connected. When going forward setting context, first you must be aware of where context is at that moment. You may then move forward by setting context where you need it, or end context to get back where you need it.

Let’s say you have a form with a button on it. In the action of that button, you need to go get some information off of another form that you know is onscreen at the time. When that button is pressed, context is automatically there on the globalid the button resides on.

In order to get your information, first you would need to set context to the globalid of the other form, then set context to the relative id of the object you want to get the information from. After you have done the data extraction, you would end context to get context back to the form, then end context again to get context back to the original globalid. You can go back and forward along the context chain, but you can’t jump links. You would not be able to set context directly to the relative id of the input field on the other form without first setting it to the other form itself first. If you tried to do that, the stream would be trying to look for that relative ID on the current form.

Database and Manager Context

A stream can have context set in the Manager and Database tools at the same time. One part of the stream is looking onscreen; the other part is looking at the database (main.idx). This is how a form developer would get information from a database record and put that information onto the form that’s onscreen.

idb_set_context <20-0-0>

(stream looks at database record 20-0-0

man_set_context_relative <2>

(stream sets context onscreen to relative id 2

...your stream here....

(your stream could pull info or write into the record

idb_end_context

(ends context on the database record

man_end_context

(ends context on relative id 2

Return Values

Within a stream, some atoms have a return value after the client processes them. Some return a value to let you know your atom worked –

man_check_and_set_context_relative <relative id>

 This atom has a return value of the specified relative id if it was successful, 0 if it failed.

Other atoms return a more useful value, and you can manipulate the data returned by writing the data to a database record, sending that data to the host, etc. –

uni_start_stream

(starts the stream

de_start_extraction <0>

(starts an extraction

man_set_context_relative <1>

(sets beginning context

de_get_data_pointer

(gets string from RID 1 and returns a pointer to it

var_string_set_from_atom <A>

(takes last return value and puts in STR A

man_end_context

(ends beginning context

de_end_extraction

(ends the extraction

man_set_context_relative <2>

(sets next context

var_string_get <A>

(gets STR A and returns it

uni_use_last_atom_string <man_replace_data> (takes that string and

puts it in the object in

context

man_end_context

(ends context on relative ID 2

man_update_display

(updates the display so you can see change

uni_end_stream

(ends the stream

The return value can be a string, a numeric value, or raw data, depending on the data type used by the atom retrieving that information. de_get_data will return raw data, de_get_data_value will return a value (number), and de_get_data_pointer returns a pointer to the string.

Notice in the example above, the continuous use of the same data type. When dealing with a type of data, always use the atoms that will handle that data type – String (STR) registers and string-handling atoms for ascii/string values, number (NUM) registers and value-handling atoms for numbers/values, and Raw Data (RAW) registers and raw data-handling atoms for raw data. It sounds repetitive, but it’s very important to use the correct atoms. Best case scenario, if you don’t use the right atoms, is your stream will not work – worst case is it will GPF your client and cause you to crash. See the section on Variables (the VAR protocol) for more information.

Data types can be converted to a different type after they are correctly extracted. There will be more on this later.

Another example:

man_get_display_characteristics <0> <50>

This atom takes 2 arguments, and returns a numeric value. The first argument of <0> is 'client width' (as defined in the Display Manager chapter in the FDO manual). The second argument is a percentage. The second argument defines the percentage of the first argument that the developer wants returned. So - when this atom is run, the atom will (1) return with the numeric value of the current client width, (2) apply the second argument to it (50%) and then return that value. The stream containing this atom might look like this:

man_start_object <ind_group>

man_get_display_characteristics <0> <50>

uni_use_last_atom_value <mat_width>

...

man_end_object

or in form_edit:

atom$man_get_display_characteristics 0 50

atom$uni_use_last_atom_value <prot$mat> <atom$mat_width>

This would make the width of the rendering form half (50%) of the current client width.

Another example of a return value:

atom$act_get_db_value <20-0-0>

This atom gets the value stored in the record 20-0-0 and returns it. You can then work with that value in the next part of the stream, or store it in a variable for later use, etc. Please remember when working with return values – the most recent return value will be the only value retrievable unless the value has been stored in a more permanent way (such as in a variable register). Make sure you do your calculations or actions on a return value before your stream calls another atom that has a return value, or you will lose that information.

Platforms, Templates and view_rules

The Platform is the type of client you are on: Windows AOL, Windows CompuServe, Macintosh AOL, or Macintosh CompuServe. These need to be set correctly, or the client will never see your form. A template is the holder of all of the form information: The platform, view_rule, and stream.

View_rules are predefined by Host. New ones are created for each client, as well as special circumstances such as a Kids Only account or a Guest Only client. If you would like to see all the available view_rules, log into Stratus and type ‘list_rules’ at the Stratus prompt.

More than likely, you will be sticking with the latest version of AOL that you are working on – in this case, Taz. The view_rule for Taz is aol_win_us_taz, or csi_win_us_taz. Be sure to select the appropriate platform for each – WAOL2 for aol_win_us_taz, and CSIWin for csi_win_us_taz. If these are switched, and a template is created for WAOL2 / csi_win_us_taz, the AOL client will never qualify for it.

When the view_rules are defined, they are given specific rules. Most of the client specific ones such as aol_win_us_taz have a version-number range (Windows AOL Taz version numbers, in this case). So if a client requesting a form has a Windows AOL Taz version number, it would qualify for that template, as long as no other rules are defined in that view_rule that would disqualify it – such as no-kids-only. This is a general Taz view_rule, but there may be others, such as Taz Kids Only, Taz Kiosk client, and so on. Rules can be set against your parental controls (i.e. Kids Only), the type of account (Unlimited, BYOA), Internal, Internal or Overhead, and so on. Completely different streams can be created for the same form (globalid) to be seen by a myriad of different people.

In order to see a form, a client has to qualify for one of the view_rules. When a form is requested, the host looks down the list of view_rules, top to bottom, to get the first the requesting client will qualify for. When it gets to one, it sends that one down to the client. So if a US Windows AOL 7.0 client, regular account (not internal or kids only) requests a form, and the Host sees this list of templates:

Platform
View_rule

Language

WAOL2

all

English

WAOL2

aol_win_us_taz

English

WAOL2

aol_win_us_k2

English

CSIWIN
csi_win_us_taz

English

CSIWIN
csi_win_us_sugar
English

CSIWIN
csi_win_us_k2

English

CSIWIN
all

English

Although the client technically qualifies for both the ‘all’ and the ‘aol_win_us_taz’ templates, it’s going to pull the “all” template since that’s the first one it hit that the client qualified for. The ‘all’ template in this case needs to be below the ‘aol_win_us_k2’ template, so that the Taz client doing the requesting will get the right one – the aol_win_us_taz template. If they were in the correct order:

Platform
View_rule

Language

WAOL2

aol_win_us_taz

English

WAOL2

aol_win_us_k2

English

WAOL2

all

English

CSIWIN
csi_win_us_taz

English

CSIWIN
csi_win_us_sugar
English

CSIWIN
csi_win_us_k2

English

CSIWIN
all

English

A US Windows AOL 7.0 client requesting this form would get the ‘aol_win_us_taz’ template, and a US Windows 3.0 client would get the ‘all’ template (which would hopefully point the member to keyword Upgrade!).

Template order is not as important for Client as it is for Host, as most of our forms are pulled directly from the client database and not from the host, and we only have one version in the database to pull from. However, it’s a very good idea to get into the habit of making template orders correct, in case you ever work on a client form that needs to be pulled from the host, or work on any host forms for them.

Saving your forms and installing to the test system

When working on a form, save your work frequently. There are 2 places available to save it to – you can save it to the Area Manager (the VPD version of a personal filing cabinet that can hold all of your forms and artwork), or the Host. The Area Manager is for temporary storage while you are working on the form.

There are two steps to take when you are finished with your form or stream – Saving to the Host, and installing to the Test System.

When you save a new form to the host using VPD, this is when you give the form a name, and define the 'branch records': platform, template and view_rule. You define a template name (in your own words, preferably something intuitive such as "AOL US Taz" or something similar), then you add the appropriate view_rule to that template, aol_win_us_taz, choose the correct platform (WAOL2, CSIWin, etc) and save it. At this time, the form is NOT given a GID (globalid/form number). However, you can still load that form in VPD by the name you've given it, when you go to the Designer menu --> Open form --> From host.. and type in the form name.

When you are working on a form that already exists and has the templates defined, and you save it, all you are doing is saving your changes back into that template; it doesn't go onto the test system or onto production. When you install it to the test system, all the templates are pushed to the test system, but until you do, the changes you have made are not available to be seen on the test system. The same with production - when you install to production, all the templates get pushed there, and are available to be viewed.

When you load a form from the Host in order to make changes to it, the last saved version is what you get. If the last person just saved their changes but didn’t push them to the test system, you will get that saved version.

The following discussion about pushing to the test system and to production applies only to client forms that will be invoked from the database. If the form will be called from the host when it is invoked then there will be NO PUSHING TO PRODUCTION without testing and consent from QA. Pushing of broken streams to production is one of the worst ways to affect Member’s experiences.

The only place you will more than likely ever push a form to is to the test system. The only time it's absolutely necessary to push to production is when the test system is down and the changes you are making are urgent (i.e., you need to push your change into the code tree for the Beta build in an hour but can’t get onto the test system to update your database record). In this case, you will need to get someone with Production Rights to push it to production for you, but FIRST they will make a backup of that form. For maintenance, we sometimes push forms to production to update the version there, in case we have to do a 'rollback'. This is when someone has worked on a form, pushed it to test, and something has gone completely haywire (as in the case of someone accidentally saving and pushing a UK template in the place of a US one). We then can do what's called a 'rollback' - it takes the last version saved to production and rolls it backwards over the test version, in effect deleting any changes made to the test version since it was last put on production. We don't like doing this, as that production version may be missing more than one bug fix. Which is why we attempt to do backups frequently ;)

If someone accidentally pushes to production and something is broken, they either (1) need to fix it immediately, or if that is impossible (2) get to call Stratus Ops and have THEM try to roll it back. It’s not guaranteed that Stratus Ops will be able to do this – please be very careful where the forms are being pushed when you are doing it.

For further information on test systems and updating from them, please see Appendix A – Using the Master Tool.

Things to remember:

FDO doesn't take anything for granted. Make sure you tell it everything you want it to do. Start the stream, start the object, end the object, update the display, end the stream.

Objects are defined with default attributes (i.e. When you do a man_start_object <trigger, “button”>, VPD assumes a normal button style, gray background with black text as default until you tell it otherwise).

When starting a stream or an object, make sure to end it. Same things with context; when you set it, end it.
If you try to set context to something that is NOT on the screen, the stream will die a quick death right at that point.

The atomic debugger can be your best friend.

Save your work frequently - there's nothing like finally finding the answer to a problem you're having within a stream and losing it due to a crash.

TEST your forms and streams!
Universal Protocol

UNI

Controlling flow and logic within atom streams

The Universal (UNI) protocol (protocol ID 0) consists of atoms that provide basic utility and control functions common to all platforms that use the FDO91 language. This functionality includes stream execution control and atom management; such as starting, ending, and controlling atom streams and managing large atoms. The protocol also supports some temporary data storage, data manipulation operations, and client session control.
Temporary data storage:

uni_save_result

uni_get_result

It is possible to temporarily store a last return value without using variables with uni_save_result.

To get the return value back out to use it, use uni_get_result.

uni_start_stream

(starts the stream

de_start_extraction <0>

(starts a client based data extraction

man_set_context_relative <1>

(sets context to RID 1

de_get_data_value

(extracts the number value in RID 1

uni_save_result

(temporarily saves the number value

man_end_context

(ends context on RID 1

de_end_extraction

(ends the extraction

uni_get_result

(gets the value saved by uni_save_result and returns it

…

(rest of the stream

uni_end_stream

(ends the stream

Data manipulation:

uni_convert_last_atom_data

uni_convert_last_atom_string

These 2 atoms take the last return value and convert it – in the case of uni_convert_last_atom_data, it would return the string equivalent of the last returned data. Conversely, uni_convert_last_atom_string would return the numeric/data value of the last returned string.

Controlling flow and logic

uni_start_stream

uni_end_stream

uni_wait_on

uni_wait_off

uni_start_stream_wait_on

uni_wait_off_end_stream

uni_wait_on activates the wait state in a member session, which changes the cursor to an hourglass (wait cursor). For every uni_wait_on, a corresponding uni_wait_off must occur.
uni_start_stream is required to start all atom streams.

For every uni_start_stream, there must be a matching uni_end_stream, whether express or implied. Some shorthand atoms have an implied uni_end_stream built into them, so expressly putting another uni_end_stream after these atoms is not only unnecessary, but also detrimental.

uni_start_stream

(starts the stream

sm_send_f1 <41-10000>
(shorthand atom that requests GID 41-10000 from the host

(NO uni_end_stream

uni_start_stream_wait_on starts the stream and turns the wait state on. It is a combination of the uni_start_stream and uni_wait_on atoms. uni_wait_off_end_stream works the same way – turning the wait state off and ending the stream

uni_abort_stream

This atom is intuitive – if you ever need to stop a stream in its tracks for any reason, this atom will do it.

uni_start_stream

(starts the stream

man_preset_gid <32-30>
(checks to see if 32-30 is onscreen, if it is, set context to it

if_last_return_true_then <1>
(if “true”, run stream between here and uni_sync_skip <1>

man_make_focus

(bring that form to the front

man_update_display

(update the display

uni_abort_stream

(abort this stream

uni_sync_skip <1>

(client never sees this atom, stream stopped!

uni_use_last_atom_string

uni_use_last_atom_data

uni_use_last_atom_value

These 3 atoms are “handoff” atoms. They act as the hand in a relay race – handing the last return value (the baton) to the next atom to use as its argument.

var_string_get <A>

uni_use_last_atom_string <man_replace_data>

The result of this small stream snippet would be that man_replace_data would use the string contained in A for it’s argument.

uni_sync_skip

Used in conjunction with conditional atoms, uni_sync_skip is the marker for our if/then/else streams. It works similarly to a ‘goto’ statement:

if_last_return_true_then <1, 2>

(Conditional query of the last return value. If the return

 … if true, run this stream….

is true, the stream between the conditional

uni_sync_skip <1>

statement and uni_sync_skip <1> will be run. If

 … if false, run this stream…

the return is false, the stream between

uni_sync_skip <2>
uni_sync_skip <1> and uni_sync_skip <2> will be run.

Invoking forms

uni_invoke_local

This atom invokes the given form/Globalid from the client database.

uni_start_stream

(starts the stream

uni_invoke_local <32-4629>
(invokes the mail form from the client database

uni_end_stream

(ends the stream

uni_invoke_no_context

This atom invokes the given form/Globalid from the client database if it can find it, from the Host if it can’t. Context does not switch to the new form just invoked; it stays where it was before invoking the new form.

uni_start_stream

(starts the stream

uni_invoke_no_context <32-4621>
(invokes one of the pfc forms from the client database

uni_end_stream

(ends the stream

Looping

A loop is a stream section that is repeatable – always sectioned off by a uni_start_loop and uni_end_loop. Loops must contain at least one conditional statement and a corresponding uni_sync_skip (see example below).

Loops require a conditional statement to evaluate to “false” at some point to stop. A loop that does not have this has no way to break out and creates an ‘endless loop’ where the user hangs at an hourglass with a locked-up client.

The loop will continue to loop continuously while the loop’s conditional statement evaluates to "true". This is the part where "do while" comes in. Do this stream while this condition evaluates to true.

Loops are used in many ways.. an example is on the sign on screen of the client. When the form is first rendered, the listbox containing the client screen names is actually empty. There is a stream in the listbox on that form that first looks in the database to see how many screen names you have. It then loops through the database record containing the screen names - each time it loops it picks out the next screen name and creates another trigger object in the screen name dropdown listbox. In this loop, there is a conditional check to see if it has looped less than x amount of times - x being the number of screen names from the first check. When that condition evaluates to "false" -- i.e., the number of times it has looped is no longer less than the number of screen names; it now equals the number of screen names and has drawn a trigger object for each -- the stream breaks out of the loop and carries on with the rest of the stream.

The following loop is a little simpler.

uni_start_stream_wait_on

var_number_set <A, 0>

var_number_set <B, 10>

uni_start_loop

 man_set_context_relative <3>

 var_number_increment_save <A>

 var_number_get <A>

 uni_convert_last_atom_data

 uni_use_last_atom_string <man_replace_data>

 man_end_context

 man_update_display

 if_numa_neq_numb_then <1>
(Loop conditional statement

 uni_wait_off

 uni_end_loop

uni_sync_skip <1>

(IMPORTANT: The uni_sync_skip is AFTER the uni_end_loop!

uni_end_stream

This stream first sets the beginning conditions: Variable NUM A = 0, Variable NUM B = 10. Then it starts a loop. The loop first sets context to a text field on the form (man_set_context_relative <3>). The loop increments A and saves it, (so now A = 1), then gets it again so it has A as the last return value (var_number_get <A>). Uni_convert_last_atom_data converts the last return value (A, which right now is 1), to the string equivalent (“1”). Using uni_use_last_atom_string, it gives that string equivalent of “1” to man_replace_data, which then puts that string in the text field that context is currently set to (relative ID 3). Then it ends context and updates the display.

If_numa_neq_numb_then <1> is the conditional statement that must evaluate to “false” to stop looping. Since it evaluates to “true” [1 does not equal 10, so A does not equal (neq) B = statement is true], it runs through to the end of the loop. The stream turns the wait off and goes back to the top to re-loop.

Once it has looped 9 more times and incremented A to 10, the conditional query of if_numa_neq_numb_then <1> will then evaluate to “false”, the stream will jump to uni_sync_skip <1> (outside the loop) and continue from there. If that conditional query was not there, or if NUM A never equals NUM B, there would be an endless loop.. the atoms between uni_start_loop and uni_end_loop would run continuously, over and over, until the client crashed.

Display Manager Protocol

MAN

Handling form displays, defining of objects

The Display Manager (MAN) protocol (protocol ID 1) consists of atoms that are responsible for handling objects displayed on online service forms. Display Manager protocol atoms control the creation and management of objects and basic form display. Multiple hierarchies of display objects are maintained.

uni_start_stream

(starts the stream

man_start_object <ind_group, “Form Title”>
(starts the form object

mat_precise_width <300>

(attribute, precise width

mat_precise_height <300>

(attribute, precise height

mat_bool_precise <yes>

(assigns “precise” attribute

man_start_object <trigger, “Button”>

(starts a button object

mat_precise_x <20>

(assigns x position for object

mat_precise_y <20>

(assigns y position for object

man_end_object

(ends object, button

man_end_object

(ends object, form

man_update_display

(updates the onscreen display

uni_end_stream

(ends the stream

Every object started with man_start_object must be ended with man_end_object. With man_start_object, the form developer assigns the object type to start and an optional object title. Man_end_object will end the object most recently started and each subsequent man_end_object will work backward through the object tree. See Page 13 for a list of object types.

man_start_sibling

This atom works similarly to man_start_object, but does not start an independent object; it starts a sibling object. Siblings are basically leaves off the same branch – they use the context of the object started before them to work off of. If the object started before the sibling is in a group, the sibling will be in the same group. If the object started before the sibling is a button in a listbox, the sibling will be in the same listbox. There is an unlimited number of siblings the developer may start. The subsequent man_end_object will end the object that was started and all siblings associated with it.

uni_start_stream

(starts the stream

man_start_object <ind_group, “Form Title”>
(starts the form object

mat_orientation <hff>

(assigns orientation of form, non-precise

man_start_object <org_group>

(starts the group object

mat_orientation <hff>

(assigns orientation of the group, non-precise

man_start_object <trigger, “Button 1”>

(starts a button object

man_start_sibling <trigger, “Button 2”>

(starts a sibling button

man_start_sibling <trigger, “Button 3”>

(starts a sibling button

man_end_object

(ends object, button 1 and all siblings

man_end_object

(ends object, group

man_end_object

(ends object, form

man_update_display

(updates the onscreen display

uni_end_stream

(ends the stream

man_set_context_relative

This atom sets the context to the given relative ID. Relative ID’s are defined with mat_relative_tag in the definition of objects.

man_check_and_set_context_rid

This atom checks for the existence of the given relative ID. If the relative ID exists, context is set to it, and the atom returns the given relative ID as a value. If the relative ID does not exist, the atom returns false (0).

As always, knowing where context is at any given time is very important, whether you are starting objects, closing objects, or setting / ending context to objects on the current form or on a different one. Following is a list of Display Manager atoms that are used in Client forms.

Object definition, creation, start or end

man_end_object

man_insert_object_after

man_insert_object_before

man_preset_gid

man_start_object

man_start_sibling

Object context setting or ending

man_change_context_relative

man_check_and_set_context_rid

man_end_context

man_set_context_globalid

man_set_context_index

man_set_context_relative

Object tree navigation

man_get_child_count

man_get_first_window

man_get_next_window

Object or window closing

man_close

man_close_children

man_close_update

Window minimization

man_is_window_iconic

Focus on objects, setting or detecting

man_get_top_window

man_is_rendered

man_make_focus

man_place_cursor

Object data content — clearing or appending

man_append_data

man_clear_file_name

man_clear_object

man_clear_relative

man_end_data

man_replace_data

Object display update

man_close_update

man_update_display

man_update_end_object

man_update_woff_end_stream

Pop-up menu items

man_build_favorites_menu

man_build_savemail_menu

man_build_signatures_menu

Object edit management

man_do_edit_menu

Object titles management

man_get_index_by_title

man_preset_title

man_set_default_title

man_use_default_title

Object attributes of the Attribute Manager (MAT) atom protocol

man_get_attribute

Form management

man_display_popup_menu

man_spell_check

man_preset_authoring_form

man_build_font_list

DOD object rendering

man_force_old_style_dod

Timer management

man_enable_continuous_timer

man_enable_one_shot_timer

man_kill_timer

Session and logging management

man_item_get

man_item_set

man_logging_command

man_set_item_type

URL preset management

man_preset_url
Accessibility

man_accessibility_setting

Async Protocol

ASYNC

Miscellaneous FDO91 functions

The Async Protocol (protocol ID 13) consists of atoms that control the communication flow between the host and client. Atoms of the Async Protocol also provide the following miscellaneous functions:

• Displaying an alert dialog box

• Sending a message to let the client tools know the member is offline

• Sending a message to let the client tools know the member is online

• Playing a sound if the member has a sound card

• Launching other applications on the client computer

Displaying an alert dialog box

async_alert

Alerts are modal Windows dialog boxes containing text. They can display information, let the member know an error has occurred, or get member input in the form of a Yes/No query. The following are the different types of alerts:

info

Windows dialog box with a white speech bubble containing an “ i ”, text, and an “OK” button.

error

Windows dialog box with a big red “X”, text, and an “OK” button.

warning

Windows dialog box with a yellow “caution” sign, text, and an “OK” button.

yes_no

Windows dialog box with a white speech bubble containing a “?”, text, and “Yes” and “No” buttons.

yes_no_cancel

Windows dialog box with a white speech bubble containing a “?”, text, and “Yes”, “No” and “Cancel” buttons.

uni_start_stream

async_alert <info, “Thank you!”>

uni_end_stream

Launching other client computer applications

With an atom, we can launch an external application if we know where the program executable is located on the member’s hard drive.

uni_start_stream
async_exec_app <"C:\WINDOWS\AOLSHARE\sysinfo\sinf.exe">
uni_end_stream

This small stream would launch the Sysinfo program.

Sending a message to the tools to indicate the “online” states

async_online

async_offline

Both of these atoms broadcast a message to all the client tools that the client has either gone online or gone offline. The tools then do any actions they have predefined for these events. These are not atoms the Form Developer will use often.

Playing sounds

async_playsound

async_playsound_dammit

async_install_sound
async_playsound will play the given sound. async_playsound_dammit forces a sound to play even if another one is currently playing, and is seen in pre-Matterhorn (June 1999)forms. After this time, async_playsound was upgraded to handle multiple sound requests, so async_playsound_dammit is no longer used.

uni_start_stream

async_playsound <“welcome”>

uni_end_stream

The above stream will play the welcome.wav sound located in the AOL main directory. If a sound needs to played that is outside the AOL client, give the DOS path to the sound, along with the .wav name, as the argument:

uni_start_stream

async_playsound <"c:/windows/whatever.wav">

uni_end_stream

async_install_sound provides the means for dynamic installs of new sounds and restoration of default sounds.

Following are the arguments for this atom:
1 – Restore default sounds for all screennames
2 – Restore default sounds for current screenname
3 – Install a new sound for all screennames
4 – Install a new sound for current screenname
5 – Disable all sounds for the current screenname

uni_start_stream

async_install_sound <1>

uni_end_stream

The above stream will restore the default AOL sounds for all screennames on the account.

Querying system usage

async_system_usage

Using this atom, we can query the current Windows version for the following information:

An argument of 0 = Windows version (in 32-bit, 95, or NT)

An argument of 1 = Percentage of memory free

An argument of 2 = Percentage of system resources free (16-bit only)
uni_start_stream

async_system_usage <1>

uni_end_stream

This atom stream would return the percentage of memory free as a value.

Specific Functions

async_invoke_language_pref

async_invoke_timezone_pref

These async atoms invoke specific dialog boxes for the member to set their language and timezone preferences:

uni_start_stream

async_invoke_language_pref

uni_end_stream

Attribute Manager Protocol

MAT

Attribute Manager - Specifies form and object attributes

The Attribute Manager (MAT) protocol (protocol ID 16) consists of atoms that let you assign certain characteristics to objects on a form and to the form itself.

Attributes are set in the in-stream, or definition, of the object.

uni_start_stream

(starts the stream

man_start_object <ind_group, “Form Title”>
(starts the form object

mat_precise_width <300>

(attribute, precise width

mat_precise_height <300>

(attribute, precise height

mat_bool_precise <yes>

(assigns “precise” attribute

man_start_object <trigger, “Button”>

(starts a button object

mat_precise_x <20>

(assigns x position for object

mat_precise_y <20>

(assigns y position for object

man_end_object

(ends object, button

man_end_object

(ends object, form

man_update_display

(updates the onscreen display

uni_end_stream

(ends the stream

Displaying art and graphics

mat_art_animation_rate

mat_art_animation_seq

mat_art_frame

mat_art_id

mat_bool_background_pic

mat_bool_background_tile

mat_bool_graphic_view

mat_bool_invert

mat_bool_repeat_animation

Displaying progressive rendering hints

mat_art_hint_font_size

mat_art_hint_height

mat_art_hint_select_placeholder

mat_art_hint_title

mat_art_hint_title_x

mat_art_hint_title_y

mat_art_hint_width

Displaying toolbars

mat_bool_child_line_feed

mat_bool_child_movable

mat_bool_child_removable

mat_bool_children_movable

mat_bool_children_removable

mat_bool_customizable

mat_bool_tool_group

Displaying windows

Placement

mat_form_icon

mat_position

mat_style_id

Sizing

mat_bool_resize_horizontal

mat_bool_resize_vertical

Navigation

mat_bool_modal

mat_bool_non_closeable

mat_dirty_query

Displaying scrollbars

mat_bool_horizontal_scroll

mat_bool_vertical_scroll

Displaying menus

mat_bool_dropdown_button

mat_bool_popup_menu

Displaying objects

mat_bool_default

mat_bool_disabled

mat_bool_draw_focus

mat_bool_gradual_shadow

mat_bool_no_border

mat_bool_permanent

mat_frame_style

mat_trigger_style

Placement

mat_bool_hidden

mat_bool_invisible

mat_bool_precise

mat_horizontal_spacing

mat_orientation

mat_precise_x

mat_precise_y

mat_text_on_picture_pos

mat_vertical_spacing

Sizing

mat_bool_expand_to_fit

mat_height

mat_precise_height

mat_precise_width

mat_size

mat_title_width

mat_width

Titles

mat_title

mat_title_append_screen_name

mat_title_pos

mat_title_width

Color

mat_bool_background_flood

mat_bool_background_pic

mat_color_face

mat_color_frame_hilight

mat_color_frame_shadow

Trigger color

mat_color_bottom_edge

mat_color_selected

mat_color_top_edge

List-box items

mat_bool_contiguous

mat_bool_default_send

mat_bool_list_icons

mat_sort_order

URL history lists

mat_bool_ignore_url_list

mat_url_list

Tabbed pages

mat_bool_page_control

mat_tab_get_cur_sel

mat_tab_set_cur_sel

Text views and text

mat_bool_double_space

mat_bool_drop_at_top

mat_bool_exportable

mat_bool_force_scroll

mat_bool_importable

mat_bool_list_allow_entry

mat_bool_protected_input

mat_bool_url_sink

mat_bool_writeable

mat_capacity

mat_color_text

mat_color_text_shadow

mat_field_script

mat_font_id

mat_font_sis

mat_font_size

mat_font_style

mat_link_content_to_rid

mat_paragraph

mat_ruler

mat_scroll_threshold

mat_sink

mat_url

Range fields/Spin gadgets

mat_increment

mat_minimum

mat_maximum

Help bubbles

mat_context_help

Timing activities

mat_timer_duration

mat_timer_event

Managing objects

mat_value

Defining shortcut keys

mat_command_key

mat_shortcut_key

Transmitting field input data

mat_secure_form
Action Protocol

ACT

Associating actions with FDO91 objects

The Action (ACT) protocol (protocol ID 2) consists of atoms that allow actions to be associated with objects on forms. For example, you can set up an action to occur as the result of a member selecting an object, such as a button on a form.

There are two parts to an action: the action criterion (specified using act_set_criterion), and the atom stream associated with it. In most cases, an action is set up when its associated object is created.

There are pre-defined action criterion ID’s that allow you to replace that action criterion’s associated action, or append your action to one already defined. The predefined action criterions and their associated ID’s are as follows:

Selection

1

Close

2

Open

3

Gain_Focus

4

Lose_Focus

5

Cancel

6

Enter_Free

7

Enter_Paid

8

Create

9

Set_Online

10

Set_Offline

11

Restore

12

Minimize

14

Restore_From_Maximize
15

Restore_From_Minimize
16

Timeout

17

Screen_Name_Changed
18

Movie_Over

19

Drop

20

Url_Drop

21

User_Delete

22

Toggle_Up

23

Activated

24

Deactivated

25

Popupmenu

26

Destroy

27

Saved

28

Chat_Update_Count

130

Gifview_Complete

132

MIP-specific actions

Mip_Mail_Get_Status

133

Mip_Mail_Keep_As_New
134

Mip_Mail_Ignore

135

Mip_Mail_Read

136

Mip_Mail_Unsend

137

Mip_Mailsort_Update

138

Each tool can have more custom actions – these are the main pre-defined ones, and you must give your own actions a unique identifier different than the pre-defined actions.

Actions can be defined for just about anything you can do on the service.. go online or offline, minimize the form, restore it, maximize it, close it, make it lose focus or gain focus. There are also ways to custom define actions.

act_replace_select_action

Associates the following atom stream (action stream) with the trigger object it’s defined in.

example:

act_replace_select_action

uni_start_stream

man_close_update

uni_end_stream

this is the same thing as:

act_set_criterion <selection>

act_replace_action

uni_start_stream

man_close_update

uni_end_stream

Both of the above streams are setting the Criterion as Selection, and associating an action stream with that criterion. When the trigger (button) is pressed, the action will run – closing the form and updating the display.

act_set_criterion

Defines an action to be run when the criterion is met;

example:

act_set_criterion <set_online>

will run the given action defined when the user connects to the service.

Or – you can define your own custom action. Integer values of custom actions can be between 32-64, (65-127 are also undefined and may be usable) unless dealing with MIP or CHAT or any other tool that has pre-defined actions in that same range:

act_set_criterion <60>

act_replace_action

uni_start_stream

 var_number_set <A, 0>

 var_number_save <A>

 var_number_set <B, 15>

 var_number_save <A>

uni_end_stream

The preceding action stream will allow you to define a custom action with the form/stream-unique identifier of 60, which you will specifically call later with a:

act_do_action <action_criterion_id>

Runs the predefined action.

Example:

act_do_action <60>

Will run action 60, already defined in the stream.

Creating actions requires that you learn the FDO 91 protocols that deal with logic flow, data extraction and variable storage and manipulation. Logic flow is handled by the IF and UNI protocols, data extraction is done using the DE protocol, and variable storage and manipulation is accomplished with the VAR protocol.

Variable Protocol

VAR

Variables

The Variable (VAR) protocol (protocol ID 12) consists of atoms that allow data variables to be associated with objects on forms. The protocol lets you manipulate object data within temporary (current) registers. There are two primary registers (current registers A and B) and two secondary registers (current registers C and D).

Variables are basically buckets in which to store your data. There are global variables, and local variable ID’s.

Global Variables

Global variables are available at any time to store data and retrieve data from. Wherever you go in the service, the last stored global variable will follow you – you carry that bucket with you. There are 3 data variable types, 4 ‘buckets’ apiece:

Strings

STR A

STR B

STR C

STR D

Values or Numbers

NUM A
NUM B

NUM C

NUM D

Raw Data

RAW A
RAW B
RAW C

RAW D

When dealing with any data type, it is extremely important to use atoms associated with that data type. String (STR) registers and string-handling atoms for ascii/string values, number (NUM) registers and value-handling atoms for numbers/values, and Raw Data (RAW) registers and raw data-handling atoms for raw data. The continuous use of the same data type will keep many VAR-related nightmares away!

var_string_set <A, “This is a string”>

Will set global STR A to This is a string. Whatever stream you happen to be in, you can get this value out, unless another stream has saved information into that variable after you have. Variables can only hold one value at a time.

Local variable ID’s

Local variable values can be stored on objects. If you have a value you want to store, you can hang your bucket off an object and it will be there until you replace it (or another stream does), or until that form is closed. This is a pretty secure way of storing values, as it is highly doubtful another stream will come along and save a different value into the same local variable id on your object.

var_string_set <A, “This is a string”>
(sets global STR A to This is a string
var_string_save <A, 20>

(saves STR A into ID 20 on the current object

The form developer must be VERY aware of WHERE he/she is in the stream – context is very important at all times, especially when dealing with variables. If he/she is in the context of the form, then variable ID 20 on that globalid will have this value. If he/she is are in the context of a trigger on that form, then that trigger will store that variable ID with that value. The developer must then set context back to the object on which that bucket was hung, to pull it back out:

man_set_context_globalid <32-6000>

man_set_context_relative <2>

var_lookup_by_id <A, 20>
(gets the string in ID 20 and places it in register STR A

..rest of stream here

For example, if you wanted to look up the Kids-Only variable to see if the current screen name is Kids Only and put the result in a text field so you could see it, you would use the following stream:

From your form (context is set to the current form):

uni_start_stream

(starts the stream

 man_set_context_globalid <1>

(sets context to the root, where that variable is stored

 var_lookup_by_id <A, 16>

(looks up the value of ID 16, and puts it in NUM A

 man_end_context

(ends context on the root; context now back on form

 man_set_context_relative <1>

(sets context to a text field on the form

 var_number_get <A>

(retrieves the value in NUM A and returns it

 uni_convert_last_atom_data

(converts the value in NUM A to a string and returns it

 uni_use_last_atom_string <man_replace_data>
(places that string in RID 1

 man_end_context

(ends context on the text field

 man_update_display

(updates the display
uni_end_stream

(ends the stream

If you want to save the last returned string into a global variable, use

var_string_set_from_atom <A>

Which is the same as

uni_use_last_atom_string <var_string_set <A>>

Manipulating data (decimal values) in numeric registers (NUM)

var_lookup_by_id

var_numa_decrement

var_numa_increment

var_numa_ones

var_numa_zero

var_number_add

var_number_copy_between_regs

var_number_decrement

var_number_decrement_save

var_number_div

var_number_get

var_number_increment

var_number_increment_save

var_number_mul

var_number_ones

var_number_ones_save

var_number_save

var_number_set

var_number_set_from_atom

var_number_sub

var_number_swap_between_regs

var_number_zero

var_number_zero_save

var_reset

Manipulating data (hex values) in raw data registers (RAW)

var_data_copy_between_regs

var_data_copy_data_to_datb

var_data_copy_datb_to_data

var_data_get

var_data_save

var_data_set

var_data_set_from_atom

var_data_swap_between_regs

var_data_zero

var_lookup_by_id

var_reset

Manipulating data (strings) in string registers (STR)

var_lookup_by_id

var_reset

var_string_copy_between_regs

var_string_copy_stra_to_strb

var_string_copy_strb_to_stra

var_string_get

var_string_null

var_string_save

var_string_set

var_string_set_from_atom

var_string_swap_between_regs

var_string_concatenate

Clearing register IDs

var_data_clear_id

var_number_clear_id

var_string_clear_id

Handling current object data values in save registers

var_data_set_id_one_value

var_number_set_id_one_value

var_string_set_id_one_value
Data Extraction Protocol

DE

Data Extraction

The Data Manager protocol (protocol ID 3) consists of atoms that provide the ability to extract data from fields in forms for local processing or to be sent to the host. Various data types and extraction options are supported. There is also support for input field validation.

Data extraction is used mainly in two ways. First, it was designed as the means of extracting user input in a form and sending it to the host and secondly, it was designed to be used in local (client-based) atom streams that interact with the database.

An example of the first use is when a user types his name and password in the registration form; data extraction atoms pull the data out of the fields and sends it to the host.

An example of the second use is using data extraction atoms in a preference form, and writing those values to the client database.

Just the same as when you want to start a stream, you must specifically start a data extraction. One of the easiest ways to cause an AOL Client to GPF is to attempt to use a data extraction atom without first starting the extraction.

de_start_extraction

de_end_extraction

When using de_start_extraction, you will give this atom one argument. An argument of <0> specifies a client-specific extraction (which means it’s for local manipulation only-it’s not going to be sent to the host). An argument of <1> specifies an extraction to be sent to the host.

Example of client to host data extraction:

uni_start_stream

(starts the stream

de_start_extraction <1>

(starts a host-bound extraction

buf_set_token <ET>

(Opens a buffer and specifies the token ET

man_set_context_relative <1>

(sets beginning context

de_get_data

(gets the raw data out of RID 1

man_change_context_relative <12>
(changes the context

de_get_data

(gets the raw data out of RID 12

man_end_context

(ends context

de_end_extraction

(ends the extraction

buf_close_buffer

(closes the buffer and sends it to the host

uni_end_stream

(ends the stream

Example of local atom stream, extracting text to a database record:

uni_start_stream

(starts the stream
de_start_extraction <0>

(starts the extraction
idb_start_obj <"t">

(creates a database record, “t” for text, “b” for binary

(Overwrites if already exists)

idb_atr_globalid <27-26-0>
(tells the database tool what record number it’s going to be
man_set_context_relative <3>
(sets context to the RID from which to extract data from
de_get_data_pointer

(returns a pointer to the string contained in RID 3
uni_use_last_atom_string <idb_append_data>
(takes that string and writes it in

database record 27-26-0

man_end_context

(ends context on RID 3
idb_end_obj

(ends the database record
de_end_extraction

(ends the extraction
uni_end_stream

(ends the stream

de_get_data

de_get_data_pointer

de_get_data_value

Depending on the type of data you are trying to extract, you would use one of the above atoms. De_get_data returns the raw data in the field in context, de_get_data_pointer returns a pointer to the string in the field in context, and de_get_data_value returns the numeric value (this can be any numeric value, including a boolean (yes/no) field. Boolean fields, when extracted, will return a 0 for no, and a 1 for yes.) in the field in context. Boolean, or yes/no, can also be used as true/false; yes (1), being true, no (0) being false.

EZ Data Extraction Atoms

There are several Data Extraction shorthand atoms that simplify the most common data extraction operations. These atoms are called easy or EZ because they eliminate having to type an entire stream of opening a buffer to the host, etc. EZ atoms are only used in host-bound data extractions.

To use these atoms you simply use a uni_start_stream, set the context if needed, and follow it with the desired EZ atom. No uni_end_stream is required; the EZ atoms have included it (another example of an ‘implied uni_end_stream’).

Example:

uni_start_stream

de_ez_send_form <ET>

This stream will send all fields on the form marked as “sendable” to the host with the given token.

Example with context:

uni_start_stream

man_set_context_relative <1>

de_ez_send_field <ET>

de_ez_send_form <token>

sends the data in all fields marked sendable, with the given token

de_ez_send_list_text <token>

sends the text of the selected list item, with the given token

de_ez_send_list_index <token>

sends the index of the selected list item, with the given token

de_ez_send_field <token>

sends the data in the field in context, with the given token

Data Types

The following datatypes are specified when using de_set_data_type. This is not required in most cases.

datatype_default

The default data type for the given object. The default data type of an object is based on common sense… i.e. The default data type for a text field would be text, or for a checkbox the default data type would be it’s Boolean (yes/no) value.

datatype_text

Extract the text from an object. This could be the content of a text field or the title of a button. It depends on the object type.

datatype_var

Extract the given variable. Any object can store many variables. These variables are set through atom streams (see the VAR section).

datatype_boolean

Extract the on/off value of a radio button or check box.

datatype_global_id

Extract the global ID of the object. Any object is able to have a global ID but not all objects will have a global ID.

datatype_relative_id

Return the relative ID of the object. Again, any object is able to have a relative ID but not all objects will have one.

datatype_index

Extract the index of the list child object. All list child objects have an index number. They are assigned sequentially as they are added to the list.

dataype_child_count

Extract the child count of the object. List objects maintain a child count.

datatype_value

Extract the value stored for the object. Objects use this value for different things. Radio buttons and checkboxes store their on/off value there. A range object stores its current setting there. A list box item stores its index there.

datatype_raw

Currently used only for Image Objects. Extract the raw binary data from the object.

datatype_length

Currently used only for Image Objects. Extract the length of the raw binary data from the object.

datatype_selected

Currently used only for selected text in a text field. Extract the selected text in a field.

Input Validation

de_validate

When performing an extraction where input is required, this atom will perform a check to make sure there actually is data contained in the required field(s). If there is no data, this atom will pop up an error on the member’s screen; usually this error is the nice client form that says, “You have not completely filled out this form.”

To require input in a field, use the atom mat_validation in the instream of the object where you are requiring input. To require numeric input, use an argument of <1>, for any input, use <128>.

Conditional Protocol

IF

Testing Conditions

The Conditional (IF) protocol (protocol ID 15) consists of atoms that allow conditional testing of the state of registers, flags, and on-screen conditions defined within FDO91 atom streams. Many of the conditional atoms act on the registers set up with Variable protocol atoms.

All conditional atoms take the same arguments, a required "then" argument and an optional "else" argument, depending on the state of register values found by the atom. When a then and/or else argument is assigned in any conditional atom, a corresponding uni_sync_skip atom must appear later in the atom stream with the associated then and/or else argument. These condition-labeled skip atoms indicate where stream execution continues after the atom evaluates the given

condition.

The syntax of a conditional atom command is as follows:

if_atom_command_then
 <then_argument, [else_argument]>

..true stream

uni_sync_skip <then_argument>

…false stream

[uni_sync_skip <else_argument]

where

if_atom_command_then
(the actual conditional atom command name.

<then_argument>

(specifies a numeric label to locate the skip atom

when the condition evaluates to “true”.

[<else_argument>]

(specifies a numeric label to locate the skip atom

when the condition evaluates to “false”. This

optional argument supports the need for an else

function.
When a conditional atom evaluates to true, the false atoms, if specified by an else argument, are ignored. When a conditional atom evaluates to false, the true atoms are ignored.

For the following example, A=0, B=1

uni_start_stream

(starts the stream

if_numa_eq_numb_then <1, 2>

(evaluates condition: Does A equal B?

If true, run stream between this atom

and uni_sync_skip <1>, if false, run

stream between uni_sync_skip <1> and

uni_sync_skip <2>

async_alert <info, “Condition evaluates to true”>

(“true” stream

uni_sync_skip <1>

(“then” argument

async_alert <info, “Condition evaluates to false”>
(“false” stream

uni_sync_skip <2>

(“else” argument

uni_end_stream

(ends the stream

Testing the raw data content of a variable register

if_data_eq_datb_then

if_data_eq_zero_then

if_data_in_datb_prefix_then

if_data_neq_datb_then

if_data_neq_zero_then

if_datb_eq_zero_then

if_datb_in_data_prefix_then

if_datb_neq_zero_then

Testing the numeric data content of a variable register

if_numa_and_numb_then

if_numa_eq_numb_then

if_numa_eq_one_then

if_numa_false_then

if_numa_gt_numb_then

if_numa_gt_one_then

if_numa_gte_numb_then

if_numa_lt_numb_then

if_numa_lte_numb_then

if_numa_neq_numb_then

if_numa_or_numb_then

if_numa_true_then

if_numb_eq_one_then

if_numb_false_then

if_numb_gt_one_then

Testing the string content of a variable register

if_stra_eq_null_then

if_stra_eq_strb_then

if_stra_in_strb_prefix_then

if_stra_neq_null_then

if_stra_neq_strb_then

if_strb_eq_null_then

if_strb_in_stra_prefix_then

if_strb_neq_null_then

Testing flag states

Flag Name

Conditional atom to test with

fDebug

fDebug

fPaidState

fPaidState

fGuestAccount

fNewUser

fOnlineState

fOnlineState

if_debug_false_then

if_debug_true_then

if_free_area_then

if_paid_area_then

if_owner_then

if_newuser_then

if_offline_then

if_online_then

Testing return values

if_last_return_false_exit (does not require a then/else argument)

if_last_return_false_then

if_last_return_true_exit (does not require a then/else argument)

if_last_return_true_then

Database Manager Protocol

IDB

Maintaining the online database

The Database Manager protocol (protocol ID 5) consists of atoms that enable the storage and retrieval of data records in the main database of the client application. Various record types and attributes are supported. A unique global ID identifies each record in the database.

As stated earlier, there is quite a bit of writing to and pulling information from the database going on behind the scenes when a member interacts with our client. Whenever a member pulls up a preference form or goes into the AOL Setup, we pull information out of the database and display that information to the member on our forms. Whenever a member changes their preferences or gets a new local access number, we write that new information to the database. Client, Host, International, Third Party, Web Development and other teams, use the database to store information exclusive to that client installation. Each team has a designated range of database records they use exclusively to avoid overwriting database records, which may be in use by another team. These record numbers (globalid’s) are tracked in each client’s globalid.h file, which is specific to each client.
The database stores database records, online and offline client forms, all artwork contained in the offline client forms, and some online artwork. Any new artwork a client encounters while browsing the service (except for art on web sites) is written to the database to enable shorter download times the next time that area is entered by the member. Client forms are stored here to enable them to be viewed offline as well as online.

Types of Database Records

· binary

· stream

· picture

· text

· list records (also known as tables, involves the use of the LM (List Manager) protocol as well as idb)

Records can be encrypted, like the stored password table, or permanent.

When dealing with information that is either being written to or extracted from the database, it is very important to keep the data types consistent. This is the same as when working with variables – if the data type is a string, use only atoms that work with strings. If it is a value, use only value data type atoms.

Another item worthy of notation is that string datatypes are always appended with a null, and the null is always seen as the end of a string.

Database record offsets

A database record can hold an unlimited amount of data. Every byte of data takes up one offset in a record (one character in a string = one byte = one offset). This can make it relatively to find the information we’re looking for in a particular record. Keep in mind that record offsets start at 0, not at 1. Offset 0 is the very beginning of a record, and then goes to offset 1, offset 2, and so on.

To extract text from a text field and write it to a database record, you would use the following stream (in the following case, RID 3 contains a string):

uni_start_stream

(starts the stream

de_start_extraction <0>

(starts the extraction

idb_start_obj <”t”>

(starts a text database record

idb_atr_globalid <255-0-1>

(gives the new database record a globalid

man_set_context_relative <3>

(sets context to the text field to extract from

de_get_data_pointer

(returns a pointer to the string in RID 3

uni_use_last_atom_string <idb_append_data>
(writes that string to 255-0-1

man_end_context

(ends context on RID 3

idb_end_obj

(ends the database record

de_end_extraction

(ends the extraction

uni_end_stream

(ends the stream

To extract data from a database record and write it to a form onscreen, you would use one of the two following streams (in the following case, 255-0-1 is storing the value of a checkbox):

uni_start_stream

(starts the stream

man_set_context_relative <3>

(sets context to the checkbox on the current form

idb_set_context <255-0-1>

(sets database context to 255-0-1

idb_get_data

(returns a pointer to the value stored in the record

uni_use_last_atom_value <mat_value>
(uses that value and puts it in the checkbox

idb_end_context

(ends database context on 255-0-1

man_end_context

(ends context on RID 3

man_update_display

(updates the onscreen display

uni_end_stream

(ends the stream

-OR-

uni_start_stream

(starts the stream

man_set_context_relative <3>

(sets context to the checkbox on the current form

act_get_db_value <255-0-1>

(returns the value in the database record

uni_use_last_atom_value <mat_value>
(uses that value and puts it in the checkbox

man_end_context

(ends context on RID 3

man_update_display

(updates the onscreen display

uni_end_stream

(ends the stream

act_get_db_value sets context to the database record, gets the current value, and ends context on the record. This atom only returns the value equivalent of what is stored in the database record.

idb_append_data adds the specified data to the current database record.

idb_atr_globalid establishes the global ID of the current database record.

idb_atr_length establishes the length of the current database record.
idb_atr_offset establishes the offset within the current database record at which data is appended to or retrieved from.

idb_cancel closes the current database record context without writing the record to the database.

idb_change_context ends the current context and establishes a new context.

idb_delete_obj deletes the specified record from the database.

idb_end_context writes the current record to the database and closes the context associated with that record.

idb_exists tests for the existence of the specified database record.

idb_get_data returns a pointer to the data from the current record based on the current offset and length.

idb_get_length returns the currently established data length.

idb_get_value returns the specified number of bytes from the current record.

idb_set_context sets the context to the specified database record.

idb_start_obj starts a new database object (record) of the specified type. (“t” for text, “b” for binary)

Shorthand Protocol

(SM)

Atoms defined in this protocol can be used in place of common lengthy atom streams

The Shorthand protocol (protocol ID 14) consists of atoms that execute multiple tasks, unlike other protocols where a single atom generally executes a single task. You can use Shorthand protocol atoms in place of lengthy sequences of atoms to enhance network efficiency by reducing the amount of data passed between the client and the host.

uni_start_stream

(starts the stream

sm_send_f1 <45-10001>
(this atom opens a buffer to the host, specifies the “f1” token,

specifies the argument “45-10001” for the form number, closes

the buffer, sends it to the host, and ends the stream

sm_do_list_action performs the action associated with the currently selected item in a list box. The action is performed on the object that initiated the request.

sm_send_f1 sends an f1 token from the client to the host. The f1 token requests a record from the retriever server, which contains the host forms for the online service. This atom turns wait on, sends the request to the host, and terminates the stream.

sm_send_free_f1 sends an f1 token from the client to the host and displays the "enter free area" prompt. The f1 token requests a record from the retriever server, which contains the host forms for the online service. This atom turns wait on, sends the request to the host, and terminates the stream. The member is prompted "Are you sure you want to enter this free area?…"

sm_send_paid_f1 sends an f1 token from the client to the host and displays the "exit free area" prompt. The f1 token requests a record from the retriever server, which contains the host forms for the online service. This atom turns wait on, sends the request to the host, and terminates the stream. The member is prompted "Are you sure you want to exit this free area?…"

sm_send_token_arg sends a token and a numeric argument to the host. This atom turns wait on, sends the data to the host, and terminates the stream.

sm_enter_free initiates a transition into a free area and prompts the member "Are you sure you want to enter this free area?…" If the member chooses yes, the client enters the free area and the stream continues to execute. If the member chooses no, the stream is terminated. If the member is already in a free area, this atom does nothing. Any atoms that succeed this atom in the stream are executing in a free area.

sm_enter_paid initiates a transition into a paid area and prompts the member "Are you sure you want to exit this free area?…" If the member chooses yes, the client enters the paid area and the stream continues to execute. If the member chooses no, the stream is terminated. If the member is already in a paid area, this atom does nothing. Any atoms that succeed this atom in the stream are executing in a paid area.

sm_send_selection_code implements user selection tracking by sending a plus group code to the host using the "Tr" token. This atom opens a buffer to the host, specifies the “Tr” token, specifies the given argument (plus group as argument to this atom), closes the buffer, sends it to the host, and ends the stream.

uni_start_stream

sm_send_selection_code <34567>

Putting it all together

(RID 21

[image: image4.png]
(RID 22

(RID 23

(Action on the button:

act_replace_select_action

(starts the trigger’s action

uni_start_stream

(starts the stream

 man_set_context_relative <21>
(sets context to the first input field

 de_start_extraction <0>

(starts the extraction

 de_get_data_pointer

(extracts information as a string

 uni_convert_last_atom_string

(converts string into number value

 var_number_set_from_atom <A>
(saves it into variable NUM A

 man_change_context_relative <22>
(changes context to the 2nd input field

 de_get_data_pointer

(extracts information as a string

 uni_convert_last_atom_string

(converts string into number value

 var_number_set_from_atom
(saves it into variable NUM B

 de_end_extraction

(ends the extraction

 man_change_context_relative <23>
(changes context to the 3rd input field

 var_number_add

(adds NUM A and NUM B and returns the value

 uni_convert_last_atom_data

(converts the returned number to a string and returns it

 uni_use_last_atom_string <man_replace_data>
(places that string in RID 23

 man_end_context

(ends the context

 man_update_display

(updates the display

uni_end_stream

(ends the stream

Putting 2 strings together (concatenating)

[image: image5.png]
(RID 21

(RID 22

(RID 23

(Action on the button:

act_replace_select_action

(starts the trigger’s action

uni_start_stream

(starts the stream

 man_set_context_relative <21>
(sets context to the first input field

 de_start_extraction <0>

(starts the extraction

 de_get_data_pointer

(extracts information as a string

 var_string_set_from_atom <A>
(saves it into variable STR A

 man_change_context_relative <22>
(changes context to the 2nd input field

 de_get_data_pointer

(extracts information as a string

 var_string_set_from_atom
(saves it into variable STR B

 de_end_extraction

(ends the extraction

 man_change_context_relative <23>
(changes context to the 3rd input field

 var_string_concatenate_regs <A, B>
(appends STR B to STR A and puts the

resulting string in STR A

 var_string_get <A>

(gets STR A and returns it

 uni_use_last_atom_string <man_replace_data>
(places that string in RID 23

 man_end_context

(ends the context

 man_update_display

(updates the display

 uni_end_stream

(ends the stream

Timers

Instream of form:

act_set_criterion <200>

act_replace_action

uni_start_stream

 var_number_set <A, 0>

 var_number_save <A>

 var_number_set <B, 15>

 var_number_save <A>

uni_end_stream

act_set_criterion <201>

act_replace_action

uni_start_stream

 man_set_context_relative <3>

 var_number_increment_save <A>

 var_number_get <A>

 uni_convert_last_atom_data

 uni_use_last_atom_string <man_replace_data>

 man_end_context

 man_update_display

 if_numa_eq_numb_then <3>

 man_kill_timer

uni_abort_stream

uni_sync_skip <3>

uni_end_stream

on a button:

act_do_action <200>

act_do_action <201>

Here is a current client form. It’s the Switch Screen Name Password form for the CompuServe client. First will be the raw stream, then the raw stream with comments.

<?xml version="1.0"?>

<?godzooky formatversion="2.5"?>

<record_list>

<record id="32-6109" type="fdo" permanent="true">

 <atom_stream>

 <![CDATA[

 uni_start_stream <00x>

 man_set_context_globalid <1>

 man_start_object <ind_group, "Switch Screen Name Password">

 mat_object_id <32-6109>

 mat_style_id <32-6109>

 mat_orientation <hct>

 mat_precise_width <355>

 mat_precise_height <130>

 mat_art_id <1-1-8832>

 mat_position <center_center>

 mat_bool_resize_vertical <no>

 mat_bool_modal <yes>

 mat_bool_precise <yes>

 mat_bool_background_tile <yes>

 man_start_object <ornament, "">

 mat_precise_x <11>

 mat_precise_y <21>

 mat_precise_width <83>

 mat_precise_height <16>

 mat_font_size <9>

 mat_font_id <arial>

 mat_font_style <bold>

 man_append_data <"Screen Name:">

 man_start_sibling <ornament, "">

 mat_precise_x <101>

 mat_precise_y <21>

 mat_size <26, 1>

 mat_relative_tag <2>

 async_get_screen_name

 uni_use_last_atom_string <man_append_data>

 mat_font_id <arial>

 mat_font_size <9>

 mat_font_style <bold>

 man_start_sibling <ornament, "">

 mat_precise_x <29>

 mat_precise_y <55>

 mat_size <8, 1>

 mat_font_size <9>

 mat_title_pos <below | bottom_or_right>

 mat_font_id <arial>

 mat_font_style <bold>

 man_append_data <"Password:">

 man_start_sibling <edit_view, "">

 mat_precise_x <101>

 mat_precise_y <52>

 mat_size <26, 1, 10>

 mat_relative_tag <1>

 mat_frame_style <pop_in>

 mat_title_pos <left | center>

 mat_vertical_spacing <4>

 mat_bool_protected_input <yes>

 mat_bool_writeable <yes>

 mat_validation <128>

 man_start_sibling <trigger, "">

 mat_title_width <8>

 mat_precise_x <170>

 mat_precise_y <94>

 mat_color_face <0, 109, 170>

 mat_color_text <254, 255, 255>

 mat_color_top_edge <150, 200, 255>

 mat_trigger_style <rectangle>

 mat_font_size <8>

 mat_title <" Switch ">

 mat_horizontal_spacing <5>

 mat_bool_default <yes>

 mat_font_id <arial>

 mat_font_size <9>

 act_replace_select_action

 <

 uni_start_stream

 de_validate <display_msg | terminate>

 man_set_context_relative <1>

 de_start_extraction <0>

 de_get_data_pointer

 uni_use_last_atom_string <async_storepassword>

 de_end_extraction

 man_end_context

 man_close_update

 async_relogon

 uni_end_stream

 >

 man_start_sibling <trigger, "">

 mat_precise_x <266>

 mat_precise_y <94>

 mat_color_face <0, 109, 170>

 mat_color_text <254, 255, 255>

 mat_color_top_edge <150, 200, 255>

 mat_trigger_style <rectangle>

 mat_font_size <8>

 mat_title <" Cancel ">

 mat_font_id <arial>

 mat_font_size <9>

 act_replace_select_action

 <

 uni_start_stream

 man_close_update

 async_exit_aux

 uni_end_stream

 >

 man_end_object

 man_update_display

 uni_wait_off

 uni_end_stream <00x>

]]>

 </atom_stream>

</record>

</record_list>

<?xml version="1.0"?>

<?godzooky formatversion="2.5"?>

<record_list>

(XML HEADERS

<record id="32-6109" type="fdo" permanent="true">

 <atom_stream>

 <![CDATA[

 uni_start_stream <00x>

(starts the stream

 man_set_context_globalid <1>

(sets context to the root of the client

 man_start_object <ind_group, "Switch Screen Name Password">
(starts the form object

 mat_object_id <32-6109>

(sets the form object id

 mat_style_id <32-6109>

(sets the form style id

 mat_orientation <hct>

(sets the form grouping orientation

 mat_precise_width <355>

(instream
(gives the form a precise width

 mat_precise_height <130>

> attributes
(gives the form a precise height

 mat_art_id <1-1-8832>

(assigns an art id to the background of the form

 mat_position <center_center>

(assigns the form position on the screen

 mat_bool_resize_vertical <no>

(sets the vertical resize attribute to “no”

 mat_bool_modal <yes>

(sets the modal attribute to “yes”

 mat_bool_precise <yes>

(sets this form as precisely placed – will ignore orientation

 mat_bool_background_tile <yes>

(uses the art id given above and tiles it for the background

 man_start_object <ornament, "">

(starts an ornamental text object

 mat_precise_x <11>

(instream

 mat_precise_y <21>

(instream

 mat_precise_width <83>

(instream

 mat_precise_height <16>

(instream

> attributes

 mat_font_size <9>

(instream

 mat_font_id <arial>

(instream

 mat_font_style <bold>

(instream

 man_append_data <"Screen Name:">
(instream

 man_start_sibling <ornament, "">

(starts an ornamental text sibling

 mat_precise_x <101>

(instream

 mat_precise_y <21>

(instream

 mat_size <26, 1>

(instream

 mat_relative_tag <2>

(instream

 async_get_screen_name

(instream
(gets the current screen name

 uni_use_last_atom_string <man_append_data>
(instream
(appends it to the current field

 mat_font_id <arial>

(instream

 mat_font_size <9>

(instream

 mat_font_style <bold>

(instream

 man_start_sibling <ornament, "">

(starts an ornamental text sibling

 mat_precise_x <29>

(instream

 mat_precise_y <55>

(instream

 mat_size <8, 1>

(instream

 mat_font_size <9>

(instream

> attributes

 mat_title_pos <below | bottom_or_right>
(instream

 mat_font_id <arial>

(instream

 mat_font_style <bold>

(instream

 man_append_data <"Password:">

(instream

 man_start_sibling <edit_view, "">

(starts an edit_view sibling

 mat_precise_x <101>

(instream

 mat_precise_y <52>

(instream

 mat_size <26, 1, 10>

(instream

 mat_relative_tag <1>

(instream

 mat_frame_style <pop_in>

(instream

> attributes

 mat_title_pos <left | center>

(instream

 mat_vertical_spacing <4>

(instream

 mat_bool_protected_input <yes>

(instream

 mat_bool_writeable <yes>

(instream

 mat_validation <128>

(instream

 man_start_sibling <trigger, "">

(starts a trigger sibling

 mat_title_width <8>

(instream

 mat_precise_x <170>

(instream

 mat_precise_y <94>

(instream

 mat_color_face <0, 109, 170>

(instream

 mat_color_text <254, 255, 255>

(instream

 mat_color_top_edge <150, 200, 255>
(instream

 mat_trigger_style <rectangle>

(instream

 mat_font_size <8>

(instream (
(
(
(
(

 mat_title <" Switch ">

(instream

 |

 mat_horizontal_spacing <5>

(instream

 |

 mat_bool_default <yes>

(instream

 |

 mat_font_id <arial>

(instream

 |

 mat_font_size <9>

(instream
overwrites initial font size of 8 ^^

 act_replace_select_action

(instream
(assigns “select” action to trigger sibling

 <

 uni_start_stream

(instream
(starts the trigger action

 de_validate <display_msg | terminate>
(instream
(validates input field (edit_view, above)

 man_set_context_relative <1>

(instream
(sets context to input field

 de_start_extraction <0>

(instream
(starts an extraction

 de_get_data_pointer

(instream
(returns a pointer to the string in RID 1

 uni_use_last_atom_string <async_storepassword>
instream
(stores the password in a buffer

 de_end_extraction

(instream
(ends the extraction

 man_end_context

(instream
(ends context on RID 1

 man_close_update

(instream
(context is set to form, so form is closed

 async_relogon

(instream
(initiates the relogon sequence

 uni_end_stream

(instream
(ends the trigger “select” action

 >

 man_start_sibling <trigger, "">

(starts another trigger sibling

 mat_precise_x <266>

(instream

 mat_precise_y <94>

(instream

 mat_color_face <0, 109, 170>

(instream

 mat_color_text <254, 255, 255>

(instream

 mat_color_top_edge <150, 200, 255>
(instream

 mat_trigger_style <rectangle>

(instream

 mat_font_size <8>

(instream

 mat_title <" Cancel ">

(instream

 mat_font_id <arial>

(instream

 mat_font_size <9>

(instream
same as above, overwrites initial font size of 8

 act_replace_select_action

(instream
(assigns “select” action to trigger sibling

 <

 uni_start_stream

(instream
(starts the trigger action

 man_close_update

(instream
(closes the form and updates the display

 async_exit_aux

(instream
(logs off the client

 uni_end_stream

(instream
(ends the trigger action

 >

 man_end_object

(ends the initial object, the initial ornamental text object

 man_update_display

(updates the display

 uni_wait_off

(turns the wait off

 uni_end_stream <00x>

(ends the stream

]]>

 </atom_stream>

</record>

(XML HEADERS

</record_list>

Just to give you some idea of the quirkiness of FDO91.. the object “form” was never given a man_end_object, nor was context ended on the root object, yet this form works fine ;)

Accessibility

The following is taken from a document put together by Scott Totman and the PSO, to give information on how to make forms accessible by the screen reader. If you would like to view the entire document, please contact either the PSO or Scott Totman.

Going forward, all forms on the service need to be made accessible, i.e. able to be read by the screen reader if one is being used by the member.

Using FDO atoms to make forms accessible

This section is broken down by individual controls within FDO forms. In general, it assumes Stratus is being used, but VPD can be used just as easily.

What do you want to do?

1) Make an image control accessible

There are five ways to provide text for an icon control.

MAT_TITLE_ACCESS

MAT_TITLE_ACCESS_RID

MAT_TITLE_ACCESS_RIDS

MAT_CONTEXT_HELP

MAT_ART_HINT_TITLE

MAT_TITLE

The order of precedence for these atoms is as they are listed above. If more than one atom is set, the one with highest precedence is used.

2) Make ornamental text accessible

There is one atom for ornamental text, MAT_BOOL_ALLOW_TABBING. This atom is described in the next section.

3) Make static rich text accessible

Same as (2)

4) Make a list control accessible

There is not an atom for list controls. These controls are accessible without any additional work. If a label is to be read that describes the list box, it must be ornamental text located directly above or to the left of the list control. If the screen reader is not reading the text, try moving it closer to the list box.

5) Make a menu accessible

There is not an atom for menus. Screen readers will read the text for each menu item. The object that generates the menu should provide a description of the menu. For example, if a button generates a menu when it is clicked, this button should have text that provides an very brief explanation of the menu using one of the atoms in (1). Good examples are the “Save to Filing Cabinet” button in the online mailbox area and the 5 colored menus on the toolbar.

6) Make a tree view accessible (such as the buddy list)

There is not an atom for tree views. Screen readers can access the text with no additional work.

7) Make a combo box accessible

There is not an atom for combo boxes. Screen readers can read text in a combo box but not graphics. Screen readers read descriptions for combo boxes the same way they read descriptions for list boxes. See (4) for an explanation.

8) Make an input field accessible

There is not an atom for input fields. Screen readers can read the text within an input field that a user has typed. Screen readers read descriptions, or labels, for input fields the same way they read descriptions for list boxes. See (4) for an explanation.

9) Make a radio button accessible

There are 3 atoms for radio buttons.

MAT_TITLE_ACCESS

MAT_TITLE_ACCESS_RID

MAT_TITLE

The precedence for these atoms is the same as for icon controls. See (1) for an explanation. Screen readers read labels for a group of radio buttons the same way they do for list boxes. See (4) for an explanation.

10) Make a checkbox accessible

Checkboxes work exactly the same as radio buttons. See (9) for an explanation.

11) Make an image control accessible

There is no way to currently make an image control accessible. All image controls should have associated text next to them. As a work around, provide a hyperlink in the text associated with the image control at the END of the text. This provides both keyboard navigation and audible feedback.

12) Make a spin control accessible

Spin controls are not currently accessible by screen readers. This is a short coming in the screen reader software. We have currently mapped spin controls to behave like Input Controls. See (8) for a description. This will change once the screen readers are fixed.

13) I have a form that needs more help than provided in 1-12.

Screen name: stotman1.

Existing atoms may be expanded to work with more controls and additional functionality added. These will be considered on an issue by issue basis.

What accessibility atom would you like to use?

NOTE: Some of the atoms mentioned above are not new to the service. Please see the FDO 91 manual for atoms not listed below.

1) MAT_TITLE_ACCESS

This is the easiest atom to use. In the INSTREAM event of the object being modified, simply type

MAT_TITLE_ACCESS <”Place your text here”>

2) MAT_TITLE_ACCESS_RID

This atom uses two controls at once. The first control indicates the control to be made accessible. This is the target control, and is the control that has context when the atom is called. The second control indicates the control containing the actual text for the screen reader to pick up. Consider this the “source” control. Target controls are icons, radio buttons, and check boxes. Source controls consist of any controls that have a label, MAT_TITLE, or MAT_TITLE_ACCESS set.

This atom is used in the INSTREAM event of the “target” control. The “source” control must have an RID assigned.

MAT_TITLE_ACCESS_RID <RID of “source” control”>

UPDATE: This atom sometimes works better when used in the post stream of the form. Set context to the target control, call the atom, then close context.

3) MAT_TITLE_ACCESS_RIDS

This atom is similar to the MAT_TITLE_ACCESS_RID atom but can use more than two controls at once. It can be viewed as replacing the MAT_TITLE_ACCESS_RID atom for the controls it supports. As with MAT_TITLE_ACCESS_RID, the object in context is the target object. Target objects are currently restricted to buttons and ornamental text (non-RICH). Source controls consist of any controls that have a label, MAT_TITLE, or MAT_TITLE_ACCESS set. The atom is used in the INSTREAM event of the target control. The atom will assign the text to all controls listed as arguments to the source control. For example, to convey the text of two static text fields with RIDS 3 and 5, to a button with RID 6 do the following:

MAN_SET_CONTEXT_RELATIVE <6>

 MAT_TITLE_ACCESS_RIDS <3 5>

MAN_END_CONTEXT

When the user tabs to the button, the screen reader will read the text of RID 3 followed by the text of RID 5.

In another example, the developer wants to read the text that is assigned to the button, but also wants to read the text of a static control. Using the RIDs above, we have:

MAN_SET_CONTEXT_RELATIVE <6>

 MAT_TITLE_ACCESS <”Save”>

 MAT_TITLE_ACCESS_RIDS <6 3>

 MAN_END_CONTEXT

 When the user tabs to the button, the screen reader will read “Save” followed by the text of RID 3.

UPDATE: As with MAT_TITLE_ACCESS_RID, this atom sometimes works better when used in the post stream of the form. Set context to the target control, call the atom, then close context.

4) MAT_BOOL_ALLOW_TABBING

This atom is used for ornamental text fields and static rich text fields. Specifically, ornamental fields and static rich text fields that have no hyperlinks or are not designated as selectable. These types of controls can not be tabbed to and as such can not be read by a screen reader. This atom allows the user to tab into these controls and allow a screen reader to read their contents.

NOTE: Only use this atom if necessary. This atom can result in extremely confusing behavior for visually impaired users. Such users are accustomed to opening a form and having the control with focus be “actionable”. In other words, they are used to being on a control that they can hit the space bar or return key and have an action occur, such as a new form opening or settings being saved. For a form to be opened, have text read, and then be left with no indication of what to do next is a very poor member experience. Where possible, end the text description with things such as “tab to the Next button to continue”. Try to provide some indication that the user must tab to another control to perform an action.

Moreover, if the text is being used on a dialog window, screen readers may pick up the text with no extra work. (Dialog windows are the forms within our service that do not contain minimize or maximize buttons, and generally must be dismissed before any other activity on the service can occur). A screen reader will in general, pick up ornamental text that is placed in the top half of a dialog window.

To use this atom, type the following in the INSTREAM event of the ornamental text or static rich text control

MAT_BOOL_ALLOW_TABBING <yes>

To set initial focus to the static text, use MAN_PLACE_CURSOR in the post stream of the form.

NOTE: MAT_BOOL_ALLOW_TABBING has no effect if a screen reader is not running.

Testing Forms

Forms should be tested for logical navigation and for logical aural feedback from the screen readers. In general, all forms should have the following behaviors:

1) Initial focus shall be placed on a logical object. In general, this would be an actionable object such as a button, but may be static text if the information in that field is critical to understanding what actions to take on the form. Since static text can not gain focus when a screen reader is not running, care must be taken to make sure a logical control has initial focus when not in screen reader mode.

2) Confirm that all actionable objects are tab-able in a logical order with and without a screen reader running. Logical order for tabbing is Left to right, then top to bottom.

3) Confirm that all tab-able controls are labeled. For controls that can not be tabbed to, such as image views, make sure that text with a hyperlink to the image view’s destination exists. See KW: chat for a good example of how to do this.

4) Confirm that all critical information is conveyed to the user. To accomplish this, the MAT_BOOL_ALLOW_TABBING atom may be needed. To minimize tabbing, use the MAT_TITLE_ACCESS_RIDS atom to associate text from multiple static text fields with one static text field. For example, if fields 3, 5, and 7 need to be read to the user, make field 3 tab-able, and give it the MAT_TITLE_ACCESS_RIDS atom with parameters <3 5 7>. This way, the user only needs to tab through one text field to hear all the information.

It is extremely important to test forms in both “screen reader mode” and in normal mode. Since everyone may not have a copy of a screen reader available, I have added a menu option to the * tool. Under Advanced, there is an Accessibility menu option. From here, one can select Enter Screen Reader Mode and Leave Screen Reader mode.

APPENDIX A

USING THE MASTER TOOL

The Master Tool is used to debug problems in forms and streams via the Atomic Debugger, look at various objects to see their attributes via the “Snoop” option, reset the client screennames, enable or disable the free/paid curtain, and various other things useful in debugging client problems.

To install the debugger, you need to get the installer from the CM website and run it over the version of AOL you are using.

The debugger installers are client version specific, so you'll need to find the one for the build number you are using. (Check Help --> About. If you have received a TOD that updates your version number, you will need to get a fresh copy of the AOL software. Install it, but do NOT log in - run the debugger installer over that fresh copy, THEN log in and get your version-number-updating TOD).

After you install the debugger, you will end up with extra csl files in your csl directory, a 'master.tol' in your tool directory, and a * in the upper left corner of your menubar after you re-launch the client. This is where your debugger menu drops down from - click the star to get it.

**Note: If you (or someone else) logs into that client as a Guest, and they are NOT internal, the system will delete the master.tol file. You'll get a nasty message, something like "You are not authorized to use the Master Tool", it will completely close your client and delete that file. This is a security measure to prevent unauthorized copies of the master tool.

[image: image6.png]The Atomic Debugger is the tool we use to view incoming and outgoing atom streams. To activate it, click the * to get the Master Tool Menu, then click “Atomic Debugger”. On the Menubar of the Atomic Debugger, click Setup Options, then Setup.

Select the Font Size (best viewed at 9 or 10 point). Decompile Atoms and Hex Dump are already selected; when you select “Atom Trace”, the debugger will automatically start showing the incoming and outgoing atoms. You can save a particular session by clicking File, then Save, and giving a name for the text file. Click “Atom Trace” again to turn off the debugger. Look at the stream that came in – is it doing what it’s supposed to? Is it stopping in the middle of the stream? Is it getting an incorrect return value? All these items can be viewed in the debugger, and more.

The ARClient Test System

This is where we update the forms from so that testing can be done on the form changes. It is very important to test all changes made, and the entire form, against the expected behavior. Do not ever push a form into the source tree or hand it off to a TOD Project Manager without first testing the form! Any bugs found need to be fixed immediately.

Access to the ARClient test system needs to be requested from the PSO. There are many other test systems, but ARClient and ARRMGS are the ones the forms get updated to. Host and Localization use ARRMGS, and Client mostly stays on ARClient.

To set up a location for the test system, make sure you have access to the test system and that you have the Master Tool installed on your client. On the sign on screen, click Setup, then Expert Setup. Next, click Add Location. Change the name of the location to "ARClient", then select the radio button option that says "Select a connection using one of these available devices". The dropdown will then be enabled. Select "TCP/IP" and then click Next. On the next form, there is an option for "Automatic Connection Script", select that radio button. On the dropdown next to it, scroll through the list until you see 'TCP/IP Client' and select that. If you select "Direct TCP/IP Connection" that will take you onto production (not what we want here). Click OK, which will take you back to Connection Setup, and click Close. The ARClient location should be highlighted, and you can sign onto the test system. The next time you want to log into the test system, just select that location out of the dropdown.

Updating from the Test System

After you have successfully logged into ARClient, click the * in the upper left corner of the menu bar (the master tool). Go to Database, then to Update Database Record. In the “Global Id” box, key in the GID of the form you wish to update. Put in the view_rule of the GID, and then click “Update”.

[image: image7.png]
The view_rule in the Rule/ID box is the same as the one you want to update. If it's the taz version, you would type in aol_win_us_taz. Or for K2, aol_win_us_k2. If you're on CompuServe, you would type in csi_win_us_k2, etc. It also accepts the view_rule number, if you have that handy (i.e., the 'internal' view_rule is 10, 'internal_overhead' is 11, 'all' is 0, etc).

You cannot do cross-platform updating - if you are working on the CompuServe template, you cannot update it from AOL. You will need to log into CompuServe and update it from there.

APPENDIX B

THE DATABASE VIEWER

The AOL Database Viewer (for Windows) can load a main.idx so that all records can be viewed. Art records can be seen, forms can be viewed in their stream format, and database records can be double-checked for their current values. We can also export the text contained in the records, import records, delete records, etc.

To view a database, you must be offline with that particular client, or you must make a copy of the main.idx to view. If the database is in use it will not load in the viewer.

[image: image8.png]
After you open the database, sort by ascending or descending so that the records will be easy to find.

[image: image9.png]
[image: image10.png]To view a particular record, just click it.

Artwork

[image: image11.png]
Text database record (this one holds the version number of the client).

[image: image12.png]
Form/Stream

[image: image13.png]
Form/Stream

Special Thanks go to

Scott Totman, Client

Shad Itschner, Consumer Electronics

Danny McCrystal, Host

America Online, Inc

Confidential
Page 30
12/07/01

[image: image14.png][image: image15.png][image: image16.png][image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png][image: image29.png][image: image30.jpg][image: image31.jpg][image: image32.jpg][image: image33.jpg][image: image34.jpg][image: image35.jpg][image: image36.jpg][image: image37.jpg][image: image38.jpg][image: image39.jpg][image: image40.jpg]